Bibliography
1. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, et al. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci. Biotechnol. Biochem. [Internet]. 2004 Nov [cited 2013 Oct 7];68(11):2353–9. Available from: Invalid Link Removed
2. Hwang YP, Choi JH, Kim HG, Khanal T, Song GY, Nam MS, et al. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells. Toxicol. Appl. Pharmacol. [Internet]. 2013 Mar 1 [cited 2013 Oct 4];267(2):174–83. Available from: Invalid Link Removed
3. Lee EJ, Kang M, Kim YS. Platycodin D inhibits lipogenesis through AMPKα-PPARγ2 in 3T3-L1 cells and modulates fat accumulation in obese mice. Planta Med. [Internet]. 2012 Sep [cited 2013 Oct 4];78(14):1536–42. Available from: Invalid Link Removed
4. Hwang YP, Choi JH, Kim HG, Lee H-S, Chung YC, Jeong HG. Saponins from Platycodon grandiflorum inhibit hepatic lipogenesis through induction of SIRT1 and activation of AMP-activated protein kinase in high-glucose-induced HepG2 cells. Food Chem. [Internet]. 2013 Sep 1 [cited 2013 Oct 4];140(1-2):115–23. Available from: Invalid Link Removed
5. Ahn Y-M, Kim SK, Kang J-S, Lee B-C. Platycodon grandiflorum modifies adipokines and the glucose uptake in high-fat diet in mice and L6 muscle cells. J. Pharm. Pharmacol. [Internet]. 2012 May [cited 2013 Oct 4];64(5):697–704. Available from: Invalid Link Removed
6. Zheng J, He J, Ji B, Li Y, Zhang X. Antihyperglycemic effects of Platycodon grandiflorum (Jacq.) A. DC. extract on streptozotocin-induced diabetic mice. Plant Foods Hum. Nutr. [Internet]. 2007 Mar [cited 2013 Oct 4];62(1):7–11. Available from: Invalid Link Removed
7. Kwak DH, Lee J-H, Song KH, Ma JY. Inhibitory effects of baicalin in the early stage of 3T3-L1 preadipocytes differentiation by down-regulation of PDK1/Akt phosphorylation. Mol. Cell. Biochem. [Internet]. 2013 Oct 4 [cited 2013 Oct 7]; Available from: Invalid Link Removed
8. Lee H, Kang R, Hahn Y, Yang Y, Kim SS, Cho SH, et al. Antiobesity effect of baicalin involves the modulations of proadipogenic and antiadipogenic regulators of the adipogenesis pathway. Phytother. Res. [Internet]. 2009 Nov [cited 2013 Oct 7];23(11):1615–23. Available from: Invalid Link Removed
9. Ma Y, Yang F, Wang Y, Du Z, Liu D, Guo H, et al. CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines. PLoS One [Internet]. 2012 Jan [cited 2013 Oct 7];7(10):e47900. Available from: Invalid Link Removed
10. Guo H, Liu D, Ma Y, Liu J, Wang Y, Du Z, et al. Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacol. Sin. [Internet]. 2009 Nov [cited 2013 Oct 7];30(11):1505–12. Available from: Invalid Link Removed
11. Chen Y-Y, Lee M-H, Hsu C-C, Wei C-L, Tsai Y-C. Methyl cinnamate inhibits adipocyte differentiation via activation of the CaMKK2-AMPK pathway in 3T3-L1 preadipocytes. J. Agric. Food Chem. [Internet]. 2012 Feb 1 [cited 2013 Oct 7];60(4):955–63. Available from: Invalid Link Removed
12. Ko JS, Ryu SY, Kim YS, Chung MY, Kang JS, Rho M-C, et al. Inhibitory activity of diacylglycerol acyltransferase by tanshinones from the root of Salvia miltiorrhiza. Arch. Pharm. Res. [Internet]. 2002 Aug [cited 2013 Nov 4];25(4):446–8. Available from: Invalid Link Removed
13. Tao W, Deqin Z, Yuhong L, Hong L, Zhanbiao L, Chunfeng Z, et al. Regulation effects on abnormal glucose and lipid metabolism of TZQ-F, a new kind of Traditional Chinese Medicine. J. Ethnopharmacol. [Internet]. 2010 Apr 21 [cited 2013 Nov 4];128(3):575–82. Available from: Invalid Link Removed
14. Tan Y, Lao W, Xiao L, Wang Z, Xiao W, Kamal MA, et al. Managing the combination of nonalcoholic Fatty liver disease and metabolic syndrome with chinese herbal extracts in high-fat-diet fed rats. Evid. Based. Complement. Alternat. Med. [Internet]. 2013 Jan [cited 2013 Nov 4];2013:306738. Available from: Invalid Link Removed
15. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res. [Internet]. 2007 Apr [cited 2010 Sep 6];100(7):1063–70. Available from: Invalid Link Removed
16. Morimoto C, Satoh Y, Hara M, Inoue S, Tsujita T, Okuda H. Anti-obese action of raspberry ketone. Life Sci. [Internet]. 2005 May [cited 2010 Sep 12];77(2):194–204. Available from: Invalid Link Removed
17. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2009 Sep [cited 2010 Aug 11];106(36):15430–5. Available from: Invalid Link Removed
18. Krähenbühl S, Hasler F, Frey BM, Frey FJ, Brenneisen R, Krapf R. Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J. Clin. Endocrinol. Metab. [Internet]. 1994 Mar [cited 2013 Oct 29];78(3):581–5. Available from: Invalid Link Removed
19. Moon M-H, Jeong J-K, Lee Y-J, Seol J-W, Ahn D-C, Kim I-S, et al. 18β-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis. Biochem. Biophys. Res. Commun. [Internet]. 2012 Apr 20 [cited 2013 Oct 29];420(4):805–10. Available from: Invalid Link Removed
20. Kalaiarasi P, Pugalendi KV. Antihyperglycemic effect of 18 beta-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur. J. Pharmacol. [Internet]. 2009 Mar 15 [cited 2013 Oct 29];606(1-3):269–73. Available from: Invalid Link Removed
21. Wu X, Zhang L, Gurley E, Studer E, Shang J, Wang T, et al. Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology [Internet]. 2008 Jun [cited 2013 Oct 29];47(6):1905–15. Available from: Invalid Link Removed
22. Kang O-H, Kim J-A, Choi Y-A, Park H-J, Kim D-K, An Y-H, et al. Inhibition of interleukin-8 production in the human colonic epithelial cell line HT-29 by 18 beta-glycyrrhetinic acid. Int. J. Mol. Med. [Internet]. 2005 Jun [cited 2013 Oct 29];15(6):981–5. Available from: Invalid Link Removed
23. Okamoto M, Irii H, Tahara Y, Ishii H, Hirao A, Udagawa H, et al. Synthesis of a new [6]-gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet. J. Med. Chem. [Internet]. 2011 Sep 22 [cited 2013 Oct 29];54(18):6295–304. Available from: Invalid Link Removed
24. Tzeng T-F, Liu I-M. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine [Internet]. 2013 Apr 15 [cited 2013 Oct 29];20(6):481–7. Available from: Invalid Link Removed
25. Tzeng T-F, Chang CJ, Liu I-M. 6-Gingerol Inhibits Rosiglitazone-Induced Adipogenesis in 3T3-L1 Adipocytes. Phytother. Res. [Internet]. 2013 Mar 21 [cited 2013 Oct 29]; Available from: Invalid Link Removed
26. Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, Vaillancourt E, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature [Internet]. 2007 Jun 21 [cited 2013 Nov 5];447(7147):959–65. Available from: Invalid Link Removed
27. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. [Internet]. 2005 Feb [cited 2013 Nov 5];1(2):107–19. Available from: Invalid Link Removed
28. Lee C, Park GH, Kim C-Y, Jang J-H. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol. [Internet]. 2011 Jun [cited 2013 Oct 29];49(6):1261–9. Available from: Invalid Link Removed
29. Lee T-Y, Lee K-C, Chen S-Y, Chang H-H. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem. Biophys. Res. Commun. [Internet]. 2009 Apr 24 [cited 2013 Oct 29];382(1):134–9. Available from: Invalid Link Removed
30. Jung SA, Choi M, Kim S, Yu R, Park T. Cinchonine Prevents High-Fat-Diet-Induced Obesity through Downregulation of Adipogenesis and Adipose Inflammation. PPAR Res. [Internet]. 2012 Jan [cited 2013 Oct 29];2012:541204. Available from: Invalid Link Removed
31. Lau FC, Bagchi M, Sen C, Roy S, Bagchi D. Nutrigenomic analysis of diet-gene interactions on functional supplements for weight management. Curr. Genomics [Internet]. 2008 Jun [cited 2013 Oct 29];9(4):239–51. Available from: Invalid Link Removed
32. Vasques CAR, Schneider R, Klein-Júnior LC, Falavigna A, Piazza I, Rossetto S. Hypolipemic Effect of Garcinia cambogia in Obese Women. Phytother. Res. [Internet]. 2013 Oct 17 [cited 2013 Oct 29]; Available from: Invalid Link Removed
33. Hood RL, Beitz DC, Johnson DC. Inhibition by potential metabolic inhibitors of in vitro adipose tissue lipogenesis. Comp. Biochem. Physiol. B. [Internet]. 1985 Jan [cited 2013 Oct 29];81(3):667–70. Available from: Invalid Link Removed
34. Kim H-K, Kim JN, Han SN, Nam J-H, Na H-N, Ha TJ. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr. Res. [Internet]. 2012 Oct [cited 2013 Oct 29];32(10):770–7. Available from: Invalid Link Removed
35. Badshah H, Ullah I, Kim SE, Kim T-H, Lee HY, Kim MO. Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides [Internet]. 2013 Jul 2 [cited 2013 Oct 29]; Available from: Invalid Link Removed
36. Graf D, Seifert S, Jaudszus A, Bub A, Watzl B. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats. PLoS One [Internet]. 2013 Jan [cited 2013 Oct 22];8(6):e66690. Available from: Invalid Link Removed
37. Prior RL, E Wilkes S, R Rogers T, Khanal RC, Wu X, Howard LR. Purified Blueberry Anthocyanins and Blueberry Juice Alter Development of Obesity in Mice Fed an Obesogenic High-Fat Diet (dagger). J. Agric. Food Chem. [Internet]. 2010 Feb 11; Available from: Invalid Link Removed
38. Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J. Agric. Food Chem. [Internet]. 2008 Mar 13 [cited 2013 Oct 29];56(3):642–6. Available from: Invalid Link Removed
39. Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, et al. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem. Biophys. Res. Commun. [Internet]. 2004 Mar 26 [cited 2013 Oct 29];316(1):149–57. Available from: Invalid Link Removed
40. Tesoriere L, Butera D, D’Arpa D, Di Gaudio F, Allegra M, Gentile C, et al. Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic. Res. [Internet]. 2003 Jun [cited 2013 Oct 29];37(6):689–96. Available from: Invalid Link Removed
41. Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA. Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J. Agric. Food Chem. [Internet]. 2005 Mar 23 [cited 2013 Oct 29];53(4):1266–70. Available from: Invalid Link Removed
42. Tian W-X, Li L-C, Wu X-D, Chen C-C. Weight reduction by Chinese medicinal herbs may be related to inhibition of fatty acid synthase. Life Sci. [Internet]. 2004 Mar 26 [cited 2013 Oct 29];74(19):2389–99. Available from: Invalid Link Removed
43. Wang Y, Zhang S-Y, Ma X-F, Tian W-X. Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (dc.) danser] and its constituent avicularin. J. Enzyme Inhib. Med. Chem. [Internet]. 2006 Mar [cited 2013 Oct 29];21(1):87–93. Available from: Invalid Link Removed
44. Wang Y, Deng M, Zhang S-Y, Zhou Z-K, Tian W-X. Parasitic loranthus from Loranthaceae rather than Viscaceae potently inhibits fatty acid synthase and reduces body weight in mice. J. Ethnopharmacol. [Internet]. 2008 Aug 13 [cited 2013 Oct 29];118(3):473–8. Available from: Invalid Link Removed
45. Osadebe PO, Okide GB, Akabogu IC. Study on anti-diabetic activities of crude methanolic extracts of Loranthus micranthus (Linn.) sourced from five different host trees. J. Ethnopharmacol. [Internet]. 2004 Dec [cited 2013 Oct 28];95(2-3):133–8. Available from: Invalid Link Removed
46. Obatomi DK, Bikomo EO, Temple VJ. Anti-diabetic properties of the African mistletoe in streptozotocin-induced diabetic rats. J. Ethnopharmacol. [Internet]. 1994 Jun [cited 2013 Oct 29];43(1):13–7. Available from: Invalid Link Removed
47. Kim G-S, Park HJ, Woo J-H, Kim M-K, Koh P-O, Min W, et al. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement. Altern. Med. [Internet]. 2012 Jan [cited 2013 Nov 5];12:31. Available from: Invalid Link Removed
48. Stohs SJ, Preuss HG, Shara M. A review of the human clinical studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. Int. J. Med. Sci. [Internet]. 2012 Jan [cited 2013 Oct 29];9(7):527–38. Available from: Invalid Link Removed
49. Siegner R, Heuser S, Holtzmann U, Söhle J, Schepky A, Raschke T, et al. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle. Nutr. Metab. (Lond). [Internet]. 2010 Jan [cited 2013 Oct 29];7:66. Available from: Invalid Link Removed
50. Ono Y, Hattori E, Fukaya Y, Imai S, Ohizumi Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. [Internet]. 2006 Jun 30 [cited 2013 Oct 29];106(2):238–44. Available from: Invalid Link Removed
51. Kim A-R, Jeong S-M, Kang M-J, Jang Y-H, Choi H-N, Kim J-I. Lotus leaf alleviates hyperglycemia and dyslipidemia in animal model of diabetes mellitus. Nutr. Res. Pract. [Internet]. 2013 Jun [cited 2013 Oct 29];7(3):166–71. Available from: Invalid Link Removed
52. Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Invest. Med. [Internet]. 1995 Aug [cited 2013 Nov 6];18(4):303–11. Available from: Invalid Link Removed
53. Drira R, Chen S, Sakamoto K. Oleuropein and hydroxytyrosol inhibit adipocyte differentiation in 3 T3-L1 cells. Life Sci. [Internet]. 2011 Nov 7 [cited 2013 Nov 1];89(19-20):708–16. Available from: Invalid Link Removed
54. Ebaid GMX, Seiva FRF, Rocha KKHR, Souza GA, Novelli ELB. Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes. Nutr. J. [Internet]. 2010 Oct 19 [cited 2010 Oct 21];9(1):46. Available from: Invalid Link Removed
55. De Bock M, Derraik JGB, Brennan CM, Biggs JB, Morgan PE, Hodgkinson SC, et al. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One [Internet]. 2013 Jan [cited 2013 Nov 1];8(3):e57622. Available from: Invalid Link Removed
56. Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food [Internet]. 2012 Jul [cited 2013 Nov 1];15(7):605–10. Available from: Invalid Link Removed
57. Kontogianni VG, Charisiadis P, Margianni E, Lamari FN, Gerothanassis IP, Tzakos AG. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food [Internet]. 2013 Sep [cited 2013 Nov 1];16(9):817–22. Available from: Invalid Link Removed
58. Lui T-N, Tsao C-W, Huang S-Y, Chang C-H, Cheng J-T. Activation of imidazoline I2B receptors is linked with AMP kinase pathway to increase glucose uptake in cultured C2C12 cells. Neurosci. Lett. [Internet]. 2010 May 3 [cited 2013 Nov 4];474(3):144–7. Available from: Invalid Link Removed
59. Chang C-H, Tsao C-W, Huang S-Y, Cheng J-T. Activation of imidazoline I(2B) receptors by guanidine to increase glucose uptake in skeletal muscle of rats. Neurosci. Lett. [Internet]. 2009 Dec 25 [cited 2013 Nov 4];467(2):147–9. Available from: Invalid Link Removed