xylitol

seasoul

New member
Awards
0
Hi All,
I have to cut back on sugars.
The nutritional information of some no-sugar candies (for 100 g) reads:
- calories 882 kJ
- sugar 0.0 g
- xylitol 15 g

-sorbitol 40 g

-maltilol 3 g

If the candies were "no-sugar" for real, they should have approximately 0 calories: right?
Do I have to infer that xylitol etc. are "bad sugars" like the common sugar? that is, having a no-sugar candy is exactly THE SAME OF having a standard candy?

Thank you
Cheers
 

gopro2013

New member
Awards
0
I would not even touch the things that are considered "fake sugars". I have seen tests done on rats where this stuff makes them over eat in other areas and actually gain weight.
 
docrx

docrx

New member
Awards
0
Sorbitol is just a sugar. It may cause diarrhea in some people.
 
threeFs

threeFs

Well-known member
Awards
0
all of those bulk sweeteners cause insulin spike and fat gain
 
3clipseGT

3clipseGT

On my grind
Awards
4
  • RockStar
  • Legend!
  • Established
  • First Up Vote
Ive succesfully dieted on diet sodas with no issues.

If you gain more fat on diet sodas and or sugar free candies you need to re-adjust your discipline and or the rest of your diet.
 
threeFs

threeFs

Well-known member
Awards
0
Ive succesfully dieted on diet sodas with no issues.

If you gain more fat on diet sodas and or sugar free candies you need to re-adjust your discipline and or the rest of your diet.
OK but aspartame was not listed in the OP
 
02sixxer

02sixxer

Well-known member
Awards
0
Yeah, those artificial sweetners sure do make you get fat and force you to over eat.

1 splenda and tomorrow you will be 2lbs heavier.

You eat what you want. If you choose to over eat it is a descision you make, the sweetners are not at fault. I eat splenda everyday and I am under 8% and will be lower in the weeks to come.
 
JudoJosh

JudoJosh

Pro Virili Parte
Awards
3
  • RockStar
  • Legend!
  • Established
Those are sugar alcohols Here you go

Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties.

Abstract

Polyols are hydrogenated carbohydrates used as sugar replacers. Interest now arises because of their multiple potential health benefits. They are non-cariogenic (sugar-free tooth-friendly), low-glycaemic (potentially helpful in diabetes and cardiovascular disease), low-energy and low-insulinaemic (potentially helpful in obesity), low-digestible (potentially helpful in the colon), osmotic (colon-hydrating, laxative and purifying) carbohydrates. Such potential health benefits are reviewed. A major focus here is the glycaemic index (GI) of polyols as regards the health implications of low-GI foods. The literature on glycaemia and insulinaemia after polyol ingestion was analysed and expressed in the GI and insulinaemic index (II) modes, which yielded the values: erythritol 0, 2; xylitol 13, 11; sorbitol 9, 11; mannitol 0, 0; maltitol 35, 27; isomalt 9, 6; lactitol 6, 4; polyglycitol 39, 23. These values are all much lower than sucrose 65, 43 or glucose 100, 100. GI values on replacing sucrose were independent of both intake (up to 50 g) and the state of carbohydrate metabolism (normal, type 1 with artificial pancreas and type 2 diabetes mellitus). The assignment of foods and polyols to GI bands is considered, these being: high (> 70), intermediate (> 55-70), low (> 40-55), and very low (< 40) including non-glycaemic; the last aims to target particularly low-GI-carbohydrate-based foods. Polyols ranged from low to very low GI. An examination was made of the dietary factors affecting the GI of polyols and foods. Polyol and other food GI values could be used to estimate the GI of food mixtures containing polyols without underestimation. Among foods and polyols a departure of II from GI was observed due to fat elevating II and reducing GI. Fat exerted an additional negative influence on GI, presumed due to reduced rates of gastric emptying. Among the foods examined, the interaction was prominent with snack foods; this potentially damaging insulinaemia could be reduced using polyols. Improved glycated haemoglobin as a marker of glycaemic control was found in a 12-week study of type 2 diabetes mellitus patients consuming polyol, adding to other studies showing improved glucose control on ingestion of low-GI carbohydrate. In general some improvement in long-term glycaemic control was discernible on reducing the glycaemic load via GI by as little as 15-20 g daily. Similar amounts of polyols are normally acceptable. Although polyols are not essential nutrients, they contribute to clinically recognised maintenance of a healthy colonic environment and function. A role for polyols and polyol foods to hydrate the colonic contents and aid laxation is now recognised by physicians. Polyols favour saccharolytic anaerobes and aciduric organisms in the colon, purifying the colon of endotoxic, putrefying and pathological organisms, which has clinical relevance. Polyols also contribute towards short-chain organic acid formation for a healthy colonic epithelium. Polyol tooth-friendliness and reduced energy values are affirmed and add to the potential benefits. In regard to gastrointestinal tolerance, food scientists and nutritionists, physicians, and dentists have in their independent professional capacities each now described sensible approaches to the use and consumption of polyols.

PMID: 19087388
And

Glycemic Index and Energy Values of Polyols

Polyol GI - (glucose=100) - Calories/g
Maltitol syrup (intermediate) - 53 - 3
Maltitol syrup (regular) - 52 - 3
Maltitol syrup (high) - 48 - 3
Polyglycitol (hydrogenated starch hydrolysate) - 39 - 2.8
Maltitol syrup (high-polymer) - 36 - 3
Maltitol - 36 - 2.7
Xylitol - 13 - 3
Isomalt - 9 - 2.1
Sorbitol - 9 2.5
Lactitol - 6 - 2
Erythritol - 0 - 0.2
Mannitol - 0 - 1.5
 
Top