Methyl steroids and your liver!

ezza

Member
Awards
1
  • Established
Hey guys thought this would be a good read... ripped it from another site... all references are included...

A Closer Look at Steroid Liver Toxicity, Part 1
by M. Fischer
Pop quiz time! True or false?

1) 17-alpha alkylated steroids are harder for the liver to metabolize, so it has to work harder to break them down.
2) All 17- alpha alkylated steroids are liver toxic.
3) Non 17-alpha alkylated steroids are not liver toxic.

It may surprise you to know all of the above are false . Read on to learn why.

It's a well known fact that 17-alpha alkylated steroids are liver toxic. Just how toxic depends on who you listen to. The media and many physicians think they are deadly, whereas many online ‘bros' think they are practically harmless. There seems to be a lot of confusion on the subject, even by those who are well read on the subject of steroids. The truth is that it depends heavily on the individual using the steroid, as well as the actual steroid being used; and the dose and the duration of use. Hopefully we can dispel some rumors and gain an understanding of how these substances are toxic, and how to reduce or prevent toxicity as well!

Toxic Effects
What are the known toxic effects of oral steroids? By far the most common toxicity seen is intrahepatic cholestasis. In general, cholestasis is any condition where bile flow is stopped, and with oral anabolics it occurs within the liver. Normally, bile is released into the small intestine and where its main function is to aid the in the absorption of fats and fatlike substances. This stoppage prevents bile salts from being released into the bile duct, causing a buildup within the hepatocyte. This buildup can be toxic to the hepatocytes over time. Jaundice, a yellowing of the skin and eyes, is related to cholestasis. This occurs because bilirubin (a product of red blood cell breakdown), is normally eliminated through the bile. During cholestasis, this builds up and produces a yellowish color in the skin and eyes, and is a tell tale sign that something bad is happening. Jaundice is a rare thing to see except in newborn babies, and a healthcare professional should be sought out if you notice these symptoms. The type of cholestasis normally seen from oral steroid use is clinically categorized as ‘bland cholestasis' because there is no inflammation accompanying the cholestasis. This type of cholestasis is fully reversible upon cessation of the offending agent.





In addition to cholestasis, other reported toxic effects are peliosis hepatis and hepatic adenoma. Peliosis hepatis is the presence of blood-filled cavities in the liver. This is a rare occurrence, and the theory is that peliosis hepatis results because of liver blood outflow obstruction at the junction of sinusoids and centrilobular veins. What causes this? It is believed to be related to cholestasis, which causes growth (swelling) of the hepatocytes. In AAS users the obstruction may be due to the prolapse of hyperplasic hepatocytes into the hepatic venule wall. This is good news because this means if cholestasis can be prevented, so can peliosis hepatis.

Hepatic adenoma is mentioned several times in the literature as a possible effect of oral steroid use. The prevalence of this is extremely rare and seems to only occur after months or years of continuous use. It is very likely associated with prolonged cholestasis as well. In my opinion, it should not be a concern unless someone in your family has got this from an oral steroid (including birth control pills), and the real focus of safety should be on preventing cholestasis.

Liver Anatomy and Function
The liver has numerous important functions in the body, but its relevant functions for this article include drug metabolism and excretion, and secretion of bile salts and bicarbonate for digestion.

When orally ingested testosterone is absorbed in the small intestine it is transported to the liver via the portal vein. Here it is nearly 100% metabolized to a 17-keto steroid by the enzyme 17-hydroxy steroid dehydrogenase. This reaction is very rapid and only when high amounts of testosterone are ingested does the enzyme system get saturated, allowing some testosterone to get by unchanged. Other reactions are possible such as reduction of the ketone group on the 3 carbon, but these are not as important to toxicity of the steroid.

With 17-alpha alkylated steroids, this conversion from a 17-hydroxy to a 17-keto steroid is prevented. This is key, and if you remember anything from this article, remember the next few sentences. The main difference between 17-aa's and regular steroids is that one retains a free 17 hydroxyl group and one does not, when going through the liver. The reason that 17-aa are toxic is because the free hydroxyl is able to be conjugated with glucuronic acid, forming a D ring 17-glucuronide. It is not the 17-aa steroid that is liver toxic but rather its 17-glucuronide metabolite. So it's not that these steroids are harder to metabolize, but rather the way they are metabolized causes them to be toxic.

This fact goes for androgens as well as estrogens, 17-alpha alkylated and non 17-alpha alkylated steroids. Let me clarify that last part, normal steroids would be liver toxic if they did not get metabolized to the 17-keto steroid, so it may be more correct to say they are potentially toxic, but are not in normal use. An intravenous infusion of estradiol-17- glucuronide, testosterone-17-glucuronide or dihydrotestosterone-17-glucuronide would cause cholestasis just as oral methyltestosterone or ethinylestradiol does.

So what about the supposedly liver friendly oxandrolone? The following excerpt summarizes why it is liver friendly:

Unlike other orally administered C17alpha-alkylated AASs, the novel chemical configuration of oxandrolone confers a resistance to liver metabolism as well as marked anabolic activity. In addition, oxandrolone appears not to exhibit the serious hepatotoxic effects (jaundice, cholestatic hepatitis, peliosis hepatis, hyperplasias and neoplasms) attributed to the C17alpha-alkylated AASs.

I submit that its resistance to metabolism (17-glucuronidation) is the reason for its lack of toxicity.





So we now know 17-glucuronides are to blame for liver toxicity. Now let's examine how they cause cholestasis. Bile flow is regulated in two ways; bile salt independent flow, and bile salt dependent flow.

Bile salt independent flow is a passive process controlled mainly by the osmotic factors glutathione and bicarbonate. The exact mechanisms are not known, but it is known that biliary glutathione levels decrease significantly soon after a toxic steroid is administered. The total hepatic glutathione increases, which seems to indicate that glutathione transport to the bile duct becomes impaired. Bicarbonate transport to the bile is similarly impaired, but it is not due to impaired transporters, rather the gradient becomes diminished by some type of bicarbonate reuptake. These processes occur rapidly and are the first toxicities observed.

Bile salt dependent flow is an active process that is controlled by numerous membrane bound transporters. Specifically ATP bind cassette (ABC) transporters transport the bile salts from the blood into the hepatocyte (basolateral), and then from the hepatocyte to the bile (canilicular). The pumping of bile salts into the bile is the main force that drives bile flow, which is what we want for normal functioning. Although both basolateral and canilicular transporters are probably involved in hormone induced cholestasis, the most examined is the canilicular bile salt export pump (BSEP). Oral steroid glucuronides are known to interact with the promoter region of the gene for this transporter and to repress its expression. Besides repression of the gene, other factors may decrease the BSEP function as well. The transport of the BSEP from its point of synthesis to the canilicular membrane can be impaired in cholestasis, providing functional transporters in the wrong place within the cell.

Finally there is the genetic component. There is a great deal of genetic variation in ABC transporters among the population. Certain people are at a higher risk for developing cholestasis than others, and in the near future it will be possible for you to determine what genetic polymorphisms you have in your hepatic transporters. This should be very valuable information for anyone who is planning on taking a potentially liver toxic drug, whatever it may be. In the meantime, the best method for determining if you are at risk for cholestatic problems is to look to your family. Cholestatic conditions to be mindful of are cholestasis of pregnancy, progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis, and Dubin-Johnson syndrome. Having close relatives which any of these conditions possibly puts you at a greater risk of having toxicity issues with oral AAS.

In this article, we have explored the specifics how oral steroids cause liver dysfunction that can lead to toxicity. In part 2 of this article, we will look at methods to prevent or eliminate the major toxicities associated with using oral AAS.





References
J Clin Gastroenterol 39, Supp. 2, April 2005

Toxicol Lett. 1994 Dec;74(3):221-33.

Drugs. 2004;64(7):725-50.

Histopathology. 1977 Jul;1(4):225-46.

Drug Metab Rev. 1983;14(5):1005-19.

J Pharmacol Exp Ther. 1981 Jul;218(1):63-73.

Int J Sports Med (1981 May):2(2):101-5
 
dkkon1

dkkon1

Banned
Awards
1
  • Established
Definately a good read, I never knew that it was how the steroids were metabolized, that affected toxicity. Can't wait to read Part 2.
 

ezza

Member
Awards
1
  • Established
Me either man, very interesting indeed! hopefully a few people get something out of it...
 

maynehood171

Active member
Awards
1
  • Established
Very nice article and valuable information...
 

futurepilot

Well-known member
Awards
1
  • Established
.

So what about the supposedly liver friendly oxandrolone? The following excerpt summarizes why it is liver friendly:

Unlike other orally administered C17alpha-alkylated AASs, the novel chemical configuration of oxandrolone confers a resistance to liver metabolism as well as marked anabolic activity. In addition, oxandrolone appears not to exhibit the serious hepatotoxic effects (jaundice, cholestatic hepatitis, peliosis hepatis, hyperplasias and neoplasms) attributed to the C17alpha-alkylated AASs.

I submit that its resistance to metabolism (17-glucuronidation) is the reason for its lack of toxicity.

Int J Sports Med (1981 May):2(2):101-5
Medications similar to oxandrolone may have caused damage to the liver or spleen (a small organ just below the ribs) and tumors in the liver. Tell your doctor if you drink or have ever drunk large amounts of alcohol or used street drugs and if you have or have ever had liver disease. Tell your doctor and pharmacist if you are taking any of the following medications or herbal products: acetaminophen (Tylenol, others), cholesterol lowering medications (statins), comfrey tea, iron products, isoniazid (INH, Nydrazid), kava, methotrexate (Rheumatrex), niacin (nicotinic acid), or rifampin (Rifadin, Rimactane). If you experience any of the following symptoms, call your doctor immediately: upset stomach; extreme tiredness; unusual bruising or bleeding; lack of energy; loss of appetite; pain in the upper right part of the stomach; yellowing of the skin or eyes; flu-like symptoms; pale, cool, or clammy skin; extreme thirst; fast but weak pulse; vomiting; or fast shallow breathing.
Oxandrolone may increase the amount of low density lipoprotein (LDL; 'bad cholesterol') and decrease the amount of high density lipoprotein (HDL; 'good cholesterol') in your blood. This may increase your risk of developing heart disease. Tell your doctor if you or anyone in your family has or has ever had high cholesterol, heart disease, a heart attack, chest pain, or a stroke. Also tell your doctor if you smoke or have ever smoked and if you have high blood pressure or diabetes.

Keep all appointments with your doctor and the laboratory. Your doctor will order certain tests to check your body's response to oxandrolone. Oxandrolone may damage the liver or increase LDL without causing symptoms. It is important to have regular laboratory tests to be sure that the liver is working properly and that LDL has not increased.

Talk to your doctor about the risks of taking oxandrolone.


Heres to one that most worried me about the thread article.



Other studies however have shown links between prolonged use of the drug and problems of liver toxicity similar to those found with other 17α-alkylated steroids. Even in small dosages, many users reported gastro-intestinal problems such as bloating, nausea, skin rash and itching (hives), black, tarry stools or light-colored stools, depression, unusual bleeding, unusual swelling, yellowing of the eyes or skin, and diarrhoea.

In rare cases, serious and even fatal cases of liver problems have developed during treatment with oxandrolone. Oxandrolone may increase the amount of low density lipoprotein (LDL; 'bad cholesterol') and decrease the amount of high density lipoprotein (HDL; 'good cholesterol') in the blood. This may increase the risk of developing heart disease. Oxandrolone may damage the liver or increase LDL without causing symptoms. It is important to have regular laboratory tests to be sure that the liver is working properly and that LDL has not increased. Oxandrolone may also decrease fertility in men.



Where did you find the thread article from? It almost seems like an advertisement for Oxandrolone.
 
nephilim666

nephilim666

Well-known member
Awards
1
  • Established
lol i think it is actualy. im pretty sure ive seen this before. it does make some good points. as far as liver concerns i believe that time on makes the biggest impact on how much damage your liver takes. long periods of use of oral steroids will damage your liver, short term( less then 6 weeks with sufficient breaks ) only gives mild increase in liver values ( for me atleast ) and it usualy goes back to normal 3 weeks into pct. only time i have had liver values stay elevated was from tren winny and halostein.
 

ezza

Member
Awards
1
  • Established
just thought i'd bump it up since i noticed a few threads on liver toxicity questions
 

ezza

Member
Awards
1
  • Established
i don't know how one would come to the conclusion this is an advertisement though...i think oxandrolone was just an example that not all methylated products are actually highly liver toxic....whether it is true or not i don't know but all i got from future pilots post was SIMILAR products to oxandrolone (which could simply be any methylated steroid) MAY do this and MAY do that... sounds like a bunch of hear say to me bro, and your last thread on nolvadex had people thinking they were going to get endometrial cancer :)
 

ezza

Member
Awards
1
  • Established
after a quick google search " oxandrolone liver toxicity" this is and abstract from the very first page i brought up... i'm not promoting the drug either i've never used it nor do i intend on it.... i just like being right :)

Oxandrolone has been extensively studied in children with growth disorders and adult men with alcoholic hepatitis, an inflammation of the liver that is often accompanied by wasting. It has been shown very safe and effective for treating alcoholic hepatitis related wasting and it is believed that the metabolic problems associated with this condition are similar to those found in HIV-wasting.
Doctors' reluctance to prescribe oxandrolone, and PWA's unawareness of it, arise from a number of reasons that have nothing to do with good quality health care. One important reason is that oxandrolone is in a class of drugs known as anabolic steroids. These drugs are sometimes used by athletes to enhance strength or performance and over the past several decades have been unfairly demonized. In fact, oxandrolone at therapeutic dosages is a proven safe and effective drug for treating wasting and is not commonly associated with the dangerous side effects of other steroids, though those warnings are required to appear on the label.
 

futurepilot

Well-known member
Awards
1
  • Established
SIMILAR products to oxandrolone (which could simply be any methylated steroid)
Exactly, its a methylated streroid, and maybe the OP would be so kind to post a link to the website he got his from to clear up the issue of how valid this information is.
 

tilerbreaker

New member
Awards
0
It comes from mindandmuscle.net. If you go there and look at the author list, you'll find it.

There's a good thread a bb.com in the supp science section titled something like "Apparently the liver damage from AAS can be avoided."

I'd encourage anyone interested in this topic to go through that thread (it has to do with the PPC - liver damage stuff that someone here has just started a thread on as well, but goes into a lot of the science behind liver damage and the supps used to try to limit the amount of damage done).

Sorry, but I'm too lazy to repost everything here...
 

ezza

Member
Awards
1
  • Established
Exactly, its a methylated streroid, and maybe the OP would be so kind to post a link to the website he got his from to clear up the issue of how valid this information is.
Sorry bro i don't see your point
 

futurepilot

Well-known member
Awards
1
  • Established
In rare cases, serious and even fatal cases of liver problems have developed during treatment with oxandrolone. Contact your doctor immediately if you experience abdominal pain, light colored stools, dark colored urine, unusual fatigue, nausea or vomiting, or yellowing of the skin or eyes. These may be early signs of liver problems.

Your post says "oxandrolone appears not to exhibit the serious hepatotoxic effects."

The information on liver metabolism is relevant, but the info on oxandrolone is misleading at best.

And your article in post #10 is from the San Francisco Bay Area Reporter, hardly a medical journal.
 
nunes

nunes

Well-known member
Awards
1
  • Established
nice discussion thread


if cholestasis is the major problem we just have to take liver longer from thermolife:

TUDCA prevents cholestasis and canalicular damage induced by ischemia-reperfusion injury in the rat, modulating PKCα–ezrin pathway

Cholestasis, induced by liver ischemia-reperfusion injury (IRI), is characterized by dilatation of bile canaliculi and loss of microvilli. Tauroursodeoxycholic acid (TUDCA) is an anti-cholestatic agent, modulating protein kinase C (PKC) α pathway. PKC reduces ischemic damage in several organs, its isoform α modulates ezrin, a key protein in the maintenance of cell lamellipoidal extensions. We evaluated the effects of TUDCA on cholestasis, canalicular changes and PKCα–ezrin expression in a rat model of liver IRI. Livers flushed and stored with Belzer solution or Belzer + 10 mm TUDCA (4 °C for 6 h) were reperfused (37 °C with O2) with Krebs–Ringer bicarbonate + 2.5 μmol/min of Taurocholate or TUDCA. Bile was harvested for bile flow assessment. Liver tissue was employed for Electron Microscopy (EM) and for PKCα and ezrin immunoblot and immunofluorescence. The same experiments were conducted with the PKCα inhibitor Go-6976. TUDCA-treated livers showed increased bile flow (0.25 ± 0.17 vs. 0.042 ± 0.02 μl/min/g liver, P < 0.05) and better preservation of microvilli and bile canalicular area at EM. These effects were associated with increased PKCα and ezrin expression (P = 0.03 and P = 0.04 vs. control respectively), as also confirmed by immunofluorescence data. PKCα inhibition abolished these TUDCA effects. TUDCA administration during IRI reduces cholestasis and canalicular damage in the liver modulating PKCα–ezrin pathway.


http://www.blackwell-synergy.com/doi/abs/10.1111/j.1432-2277.2008.00682.x?cookieSet=1&journalCode=tri
 
TripDog

TripDog

Bananas
Awards
2
  • Legend!
  • Established
Ziquor

Ziquor

Well-known member
Awards
1
  • Established
Wait, 17a methylated steroids & prescription drugs can possibly effect the liver? Damn from now on I'm sticking strictly to Jager bombs and Tylenol...
 

tilerbreaker

New member
Awards
0
Wait, 17a methylated steroids & prescription drugs can possibly effect the liver? Damn from now on I'm sticking strictly to Jager bombs and Tylenol...
LOL...good one...
 

Similar threads


Top