TTA-500 ..

GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
Serious Nutrition Solutions TTA-500 (120 caps): Discount TTA-500 Supplements

only 2 left ...

here's a great log on it currently still going on ..thanks to midwestbeast

http://anabolicminds.com/forum/supplement-reviews-logs/176987-midwestbeasts-sns-tta.html

some information ..posted by Maxximal in other thread


Tetradecylthioacetic acid (TTA) is a structurally modified form of fatty acid known as a 3-thia fatty acid. Thia fatty acids are saturated fatty acids which are modified by inserting a sulfur atom at a specific position in the carbon backbone. In the case of TTA, the sulfur atom is inserted in the 3-position of the carbon backbone, hence the classification as a "3"-thia fatty acid.

TTA has been reported in the literature to have effects on:

Improving the plasma profile from atherogenic to cardio protective (Berge et al., 1999)
Stimulating immune function (Aukrust et al., 2003)
Possessing anti-inflammatory properties (Aukrust et al., 2003; Bivol et al., 2008; Dyroy et al., 2005)
Decreasing reactive oxygen species (Bivol et al., 2008; Muna et al., 1997; 2000; 2002)
Maintaining nitric oxide production (Bivol et al., 2008)
Inhibiting cancer cell infiltration (Iversen et al., 2006) and growth (Jensen et al., 2007)
Decreasing smooth muscle cell proliferation (Kuiper et al., 2001)
Inducing an increase in mitochondrial growth (Totland et al., 2000)
Increasing fatty acid oxidation (Berge and Hvattum, 1994; Skrede and Bremer, 1993)
Improving insulin sensitivity (Madsen et al., 2002)

Mitochondrial Growth and TTA

The oxidation of fatty acids occurs in the mitochondria of the cell through a process known as beta oxidation. The entire process of fatty acid metabolism involves multiple steps in which fats are first mobilized from storage sites and ultimately "burned" for energy. Although TTA itself is not processed through beta oxidation, it does stimulate the beta oxidation of other fatty acids (Berge and Hvattum, 1994). It is important to note that in addition to stimulating the oxidation of other fatty acids, TTA has been shown to result in an increase in actual mitochondria, as well as an increase in gene expression of some key enzymes involved in fatty acid oxidation (Totland et al., 2000). This is important as the amount of mitochondria and enzymes involved in fatty acid metabolism may be associated with the overall rate of lipid oxidation.
In previous work mitochondrial growth has been shown to be induced in both type I (slow twitch) and type II (fast twitch) skeletal muscle fibers, as well as in the diaphragm (Totland et al., 2000). Moreover, TTA increased the gene expression of carnitine palmitoyltranserferase II in the diaphragm, an enzyme crucial for the transport of activated fatty acids inside the mitochondria to undergo beta oxidation. Taken together, these effects of TTA on mitochondrial growth and gene expression may prove beneficial to the end result of increased fat oxidation. However, it should be noted that similar to the majority of studies using TTA as a therapeutic agent, the work of Totland et al. (2000) used rats that were fed these modified fatty acids. Replicated work in human subjects administered the same therapeutic dosages is necessary before conclusions can be drawn in relation to the impact of TTA on fatty acid oxidation in human subjects.

Fatty Acid Oxidation and TTA

As mentioned above, although TTA itself is not oxidized through beta oxidation, it has been shown to stimulate the beta oxidation of other fatty acids (Berge and Hvattum, 1994) and is clearly involved in lipid transport and utilization (Berge et al., 2005). This suggests that TTA may promote greater fatty acid usage and hence, greater fat loss over time. This may be partly due to the observation that TTA increases the transport of fatty acids into the mitochondria to undergo beta oxidation, as well as enhancing the process of beta oxidation itself (Madsen et al., 1999), which appears most prevalent in the liver (Berge et al., 2005). Related to this, several studies have reported on the beneficial effects of TTA administration related to fatty acid oxidation.
Skrede and Bremer (1993) noted that a single morning dosage of TTA (100mg) in rats increased fatty acid oxidation in isolated liver cells to values 3x greater than control (non-TTA treated) within 6 hours. Other work supports the role of TTA in increasing fatty acid oxidation, in addition to an increase in the production of ketones, which can be used as a fuel source (Madsen et al., 2002). Related to these findings, TTA has been shown to impart a significant effect on lowering blood lipids (total and LDL cholesterol), with a noted 56% reduction in VLDL-triacylglycerol (Asiedu et al., 1996). Similar effects have been noted in human subjects with HIV, in addition to a decrease in inflammation with TTA supplementation (Fredriksen et al., 2004). The effect on blood lipids may be partly related to the increase in fatty acid oxidation coupled with an increased gene expression for LDL receptors, which function in the removal of LDL cholesterol from circulation (Fredriksen et al., 2004). Such findings may have significant implications related to cardiovascular health.
Aside from the increase in fatty acid oxidation and the improvement in the blood lipid profile, TTA has been reported to prevent adiposity (accumulation of excess fat tissue) and to prevent insulin resistance, when rats were fed a high fat diet (Madsen et al., 2002). In this interesting study, it was noted that TTA treatment completely prevented the dietary-induced insulin resistance that is typically observed when animals consume a high fat diet, as well as prevented the accumulation of excess fat. This is an important finding, as insulin resistance is strongly associated with impaired glucose tolerance, often leading to obesity and the development of type II diabetes. The potential mechanism of action for these effects involves transcription factors known as peroxisome proliferators-activated receptors (PPAR), of which three distinct subtypes have been identified (alpha, gamma, delta/beta). The activation of these receptors by TTA (in particular PPARα) appears to be associated with the positive effects on gene activation related to enzymes involved in fatty acid transport and oxidation (Larsen et al., 2005).


Studies on Tetradecylthioacetic acid (TTA)

Department of Clinical Biochemistry, University of Bergen, Haukeland Hospital, N-5021 Bergen, Norway.

Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied by increased hepatic mitochondrial beta-oxidation and a decreased fatty acid/ketone body ratio in plasma. These findings indicate that PPARalpha-dependent mechanisms play a pivotal role, but additionally, the involvement of PPARalpha-independent pathways is conceivable. Taken together, our results suggest that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity.

PMID: 11971945 [PubMed - indexed for MEDLINE]



Department of Clinical Biology, University of Bergen, Norway

Administration of tetradecylthioacetic acid (a 3-thia fatty acid) increases mitochondrial and peroxisomal beta-oxidative capacity and carnitine palmitoyltransferase activity, but reduces free fatty acid and triacylglycerol levels in plasma compared to palmitic acid-treated rats and controls. The decrease in plasma triacylglycerol was accompanied by a reduction (56%) in VLDL-triacylglycerol. Prolonged supplementation of tetradecylthioacetic acid caused a significant increase in lipogenic enzyme activities (ATP-citrate lyase and acetyl-CoA carboxylase) and diacylglycerol acyltansferase, but did not affect phosphatidate phosphohydrolase. Plasma cholesterol, LDL- and HDL-cholesterol levels were reduced. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity was, however, stimulated in 3-thia fatty acid-treated rats compared to controls. In addition. the mRNAs of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and LDL-receptor were increased. Tetradecylthioacetic acid administration affected the fatty acid composition in plasma and liver by increasing the amount of monoenes, especially 18:1(n-9), mostly at the expense of omega-3 fatty acids. Compared to liver a large amount of tetradecylthioacetic acid accumulated in the heart, and this accumulation was accompanied by an increase in omega-3 fatty acids, particularly 22:6(n-3) and a decrease in omega-6 fatty acids, mainly 20:4(n-6). The results show that the hypolipidemic effect of tetradecylthioacetic acid is sustained after prolonged administration and may, at least in part, be due to increased fatty acid oxidation and upregulated LDL-receptor gene expression. The increase in lipogenic enzyme activities as well as increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity, may be compensatory mechanisms to maintain cellular integrity. Decreased level of 20:4(n-6) combined with increased omega-3/omega-6 ratio in cardiac tissue after tetradecylthioacetic acid treatment may have influence on membrane dynamics and function.


Tetradecylthioacetic acid a 3-thia fatty acid, is a novel bioactive compound. Besides being an antioxidant, it changes the plasma profile from atherogenic to cardioprotective

Ziad A. Muna, Lise Madsen, and Rolf K. Berge
Department of Clinical Biology, Division of Biochemistry, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway

Tetradecylthioacetic acid (TTA) which can not be ß-oxidized, lowers plasma VLDL-triacylglycerol (TG) and LDL-cholesterol (Chol). Increased mitochondrial ß-oxidation with a concomitant decrease in TG synthesis and secretion, seems to be the primary mechanism underlying the hypotriglyceridemic effect not only of TTA but also of w-3 fatty acids as well as fibrates in rats, rabbits, dogs and possibly also in humans. TTA is an inhibitor of HMG-CoA reductase. We have generated results both in vivo and in vitro that present evidence that TTA besides being a lipid lowering agent, also possesses antioxidant properties. First, TTA inhibits the oxidative modification of LDL which is considered as the key step in the formation of foam cells and in initiation and progression of atherosclerotic plaque. Also TTA changes the antioxidant defense system in a beneficial way i.e. glutathion (GSH) is increased, the total antioxidant status is elevated and TBARS are decreased. Second, TTA has an ³olive oil² effect since the plasma was enriched with oleic acid (18:1 n-9) and a ￾9-desaturated metabolite of TTA. This was due to upregulation of the hepatic enzyme ￾9-desaturase gene expression. Third, TTA lowers the plasma homocysteine level and inhibits restenosis. Fourth, TTA reduces the proliferation of smooth muscle cells. In conclusion, TTA is a hypolipidemic drug but also a new antioxidant. This novel bioactive compound is promising as a new therapeutic drug against atherosclerosis as it changes the plasma profile from atherogenic to cardioprotective.
 
bigbeef

bigbeef

Well-known member
Awards
1
  • Established
I'm on androhard for three more months then anabeta solo. I've been wanting to try tta and give my wife some to help her weight loss so get more in stock please. :D
what dosage you running the androhard at? is it the new or lv? I have 4 bottles of lv I am wanting to dip in to
 
GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
I'm on androhard for three more months then anabeta solo. I've been wanting to try tta and give my wife some to help her weight loss so get more in stock please. :D
U better hope ure wife doesn't see that comment lol
 
GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
Ohh yea got more in stock at nutraplanet .. Get ure hands on it before we lose another great product
 
WhatsaRoid?

WhatsaRoid?

Board Sponsor
Awards
1
  • Established
Ohh yea got more in stock at nutraplanet .. Get ure hands on it before we lose another great product
You guys aren't going to stop producing it are you? I've read two stories on why companies stop producing TTA so I find it weird yet great that SNS still has the caps out.

U better hope ure wife doesn't see that comment lol

Well so far she is doing good, she lost 3 pounds last week and I hope we can keep that up at least another week. I had her pushing the car around the track for cardio so that helped big time. I just wish I had legs as big as her haha :D


what dosage you running the androhard at? is it the new or lv? I have 4 bottles of lv I am wanting to dip in to
I have the new one, before I never cared for the old one until I read how DHT helps reverse gyno I decided to buy a few bottles of androhard to run. 3 caps twice a day.
 
GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
I don't know bro, I would have to talk to my boss .. Hopefully we can keep this product out for some time being .. Yea seems like whenever something works there's an investigation lol

You'll legs will get big as her .. U just need to be introduced to roids lol
 
schizm

schizm

Well-known member
Awards
3
  • RockStar
  • Established
  • First Up Vote
I don't know bro, I would have to talk to my boss .. Hopefully we can keep this product out for some time being .. Yea seems like whenever something works there's an investigation lol

You'll legs will get big as her .. U just need to be introduced to roids lol
think I read that (prolly among other things) is the main reason why it's in the process of being pulled...b/c it works & is cheap enough...would do no good for big pharma or the health industry if america didn't have an obesity problem....<$cha-ching!$> that's why I'm stockin up!
 
GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
think I read that (prolly among other things) is the main reason why it's in the process of being pulled...b/c it works & is cheap enough...would do no good for big pharma or the health industry if america didn't have an obesity problem....<$cha-ching!$> that's why I'm stockin up!
all about chaching's u right on that ..sucks for us :(

Here's a thread worth reading about TTA..

http://anabolicminds.com/forum/serious-nutrition-solutions/178095-tta-feedback.html

note: that's a thread within a thread....we're only 2 levels deep people!!!
thanks bro ..great articles ..i edited my 1st post for people to read up on it
 
schizm

schizm

Well-known member
Awards
3
  • RockStar
  • Established
  • First Up Vote
all about chaching's u right on that ..sucks for us :(



thanks bro ..great articles ..i edited my 1st post for people to read up on it
Nice edit man...I was like 'what.the.heck' when I clicked back in here and saw that in your first post :biggthumpup:
 
Outside Backer

Outside Backer

Well-known member
Awards
1
  • Established
dammit i need 2 bottles of this stat
 
GQNemesis

GQNemesis

Banned
Awards
2
  • RockStar
  • Established
Nice edit man...I was like 'what.the.heck' when I clicked back in here and saw that in your first post :biggthumpup:
LolYuppers :pats myself in the back:
 

Similar threads


Top