So Much for Vitamin D to Boost Testosterone...

Humble

Humble

Member
Awards
1
  • Established
https://link.springer.com/article/10.1007/s00394-018-1858-z

“Conclusion

Vitamin D treatment had no effect on serum TT levels in middle-aged healthy men with low TT levels.
.
.
.
Interestingly, in men with 25(OH)D levels < 50 nmol/l at baseline, we observed a significant treatment effect on SHBG, the major carrier protein of testosterone, after 12 weeks of vitamin D supplementation. In detail, SHBG levels remained similar in the vitamin D group, whereas SHBG levels increased in the placebo group.
 
GQdaLEGEND

GQdaLEGEND

Legend
Awards
4
  • Established
  • Best Answer
  • First Up Vote
  • RockStar
* goes in a shade to hide from sun *
 
tyga tyga

tyga tyga

Legend
Awards
4
  • RockStar
  • Legend!
  • Established
  • First Up Vote
I *think* I saw an article a few months back that basically reiterated this. I have an auto immune disease that has my Vit D levels in the dumps, so I take 10kiu/d but not for the hopes up increased testosterone lol
 
justhere4comm

justhere4comm

Banned
Awards
4
  • RockStar
  • Established
  • First Up Vote
  • Best Answer
You want a lower SHBG, so keep taking your Vitamin D3, it's all about the Free T. that can bind, not the Total T.
Bonus: Take Boron Citrate. 20mg. Also increases your Free T., by lowering SHBG.
 
thebigt

thebigt

Legend
Awards
6
  • Best Answer
  • The BigT Award
  • Established
  • Legend!
  • RockStar
  • First Up Vote
https://link.springer.com/article/10.1007/s00394-018-1858-z

“Conclusion

Vitamin D treatment had no effect on serum TT levels in middle-aged healthy men with low TT levels.
.
.
.
Interestingly, in men with 25(OH)D levels < 50 nmol/l at baseline, we observed a significant treatment effect on SHBG, the major carrier protein of testosterone, after 12 weeks of vitamin D supplementation. In detail, SHBG levels remained similar in the vitamin D group, whereas SHBG levels increased in the placebo group.
interesting that all the authors are from cold weather European countries where I assume vit d consumption is very popular...I wonder what alternative drug they are working on for replacement[or endorsement]...I am leery of studies, there always seems to be a hidden agenda.



I will continue taking my vit d.
 
Danes

Danes

Well-known member
Awards
3
  • RockStar
  • Established
  • First Up Vote
You want a lower SHBG, so keep taking your Vitamin D3, it's all about the Free T. that can bind, not the Total T.
Bonus: Take Boron Citrate. 20mg. Also increases your Free T., by lowering SHBG.
For HPTA, 20mg boron citrate will do nothing.
Dr. Reza Naghii , the doctor and researcher who ran 100s boron studies since 90s and one who found the importance of Boron (for hormones and health in general) say it does not matter where you get 10mg boron from (10mg was used in many of his studies and one of them where SHBG decreased and Testosterone increased) as long as you know the %.

Example, Boron Citrate has about 5% Boron..
200mg Boron Citrate = 10mg pure boron.

Dr.Naghii used Borax in his studies. It is sodium borate/sodium tetraborate decahydrate., having about 11% Active Boron. He used everything from 50-150mg of Borax in his studies.

I think some people misunderstand this info:
"An acceptable safe oral boron intake for adults could be between 1 and 20 mg/day. Tolerable upper intake levels (UL) for boron are: adults 19 years and older, 20 mg/day"

It means 20mg of active/elemental boron and not boron citrate.
20mg boron citrate is only 1mg active boron and rest is citric acid.

Some examples from boron studies (not Dr.Naghii studies):

- "A triple-blind, randomized, placebo-controlled clinical trial conducted in 113 single female university students with primary dysmenorrhea explored the effects of boron supplementation on pain severity and duration. Boron supplementation (300 mg daily equivalent to 10 mg/day boron)"

- "Boron supplementation and activated factor VII in healthy men.
Fifteen apparently healthy men, aged 45-65 y.
subjects received either placebo or acute bolus of 11.6 mg boron (given as 102.6 mg sodium tetraborate decahydrate)"
 
LeanEngineer

LeanEngineer

Legend
Awards
4
  • RockStar
  • Established
  • Best Answer
  • First Up Vote
interesting that all the authors are from cold weather European countries where I assume vit d consumption is very popular...I wonder what alternative drug they are working on for replacement[or endorsement]...I am leery of studies, there always seems to be a hidden agenda.



I will continue taking my vit d.
Always feels like they are leaving out or not telling you something ha. But same I will continue to take my vit D:)
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
It still likely helps for people that may have low D levels. AFAIK the study didn’t test the levels of the subjects, so if you know you have normal levels, taking more likely wouldn’t increase T, but if you’re possibly low on D, it may help normalize it, and in turn your T.
 
C

chainsaw

Well-known member
Awards
2
  • Established
  • First Up Vote
have you ran boron citrate at higher doses? I remember in the 90's boron was so hyped
 
justhere4comm

justhere4comm

Banned
Awards
4
  • RockStar
  • Established
  • First Up Vote
  • Best Answer
Nothing Boring About Boron

Lara Pizzorno, MDiv, MA, LMT

Additional article information

Abstract

The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis; osteoarthritis (OA); or breast, prostate, or lung cancer.

The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and, possibly, as recent research suggests, for the evolution of life on Earth. The current review focuses primarily on boron’s most salient effects on human health, including its impact on bone development and regeneration, wound healing, the production and metabolism of sex steroids and vitamin D, and the absorption and use of calcium and magnesium. In addition, boron has anti-inflammatory effects that can help alleviate arthritis and improve brain function and has demonstrated such significant anticancer effects that boronated compounds are now being used in the treatment of several types of cancer. A summary of the evidence suggesting that boron should be given consideration as an essential micronutrient is provided, together with leading dietary sources and intake recommendations.

Salient Effects

Bone Growth and Maintenance

Scientists have known for many years that boron is essential for healthy bones. In 1985, the US Department of Agriculture (USDA) conducted an experiment in which postmenopausal women (n = 12) who had been put on a low-boron diet (0.25 mg/d for 119 d) were supplemented with 3 mg/d of boron during two 28-day trials. In one trial, magnesium intake was low; in the other, magnesium intake was adequate. With boron supplementation, the women’s daily urinary excretion of calcium was reduced by 44%. The reduction in calcium loss resulting from boron supplementation was 52 mg/d when the women were low in magnesium and 22 mg/d when magnesium levels were adequate.1

Boron plays an important role in osteogenesis, and its deficiency has been shown to adversely impact bone development and regeneration.2 Boron influences the production and activity of steroid hormones, actions via which this trace mineral is involved in the prevention of calcium loss and bone demineralization. Boron supplementation has repeatedly been shown to markedly reduce urinary excretion of both calcium and magnesium and to increase serum levels of estradiol and calcium absorption in peri- and postmenopausal women.1,3 Boron also beneficially impacts vitamin-D utilization. Supplementation with boron stimulates bone growth in vitamin-D deficient animals and alleviates dysfunctions in mineral metabolism characteristic of vitamin-D deficiency.4

Animal studies published in 20085 and 20096 found that healing of the alveolar bone—a ridge of compact bone that contains the tooth sockets on the maxillae and mandible (ie, the bones that hold teeth)—was inhibited in boron-deficient rats. Compared with boron-adequate rats (3 mg/kg/d of boron in the diet) when evaluated at 7 and 14 days, boron-deficient animals (0.07 mg/kg/d boron in the diet) had significant reductions in osteoblast surface (57% and 87% at 7 d and 14 d, respectively) concomitant with increases in quiescent surface (120% and 126% at 7 d and 14 d, respectively), indicating that boron deficiency can result in impaired bone healing due to a marked reduction in osteogenesis.

In 2010, Hakki et al7 published research investigating the mechanisms underlying boron’s effects on osteogenesis. Boron was determined to induce mineralization of osteoblasts by regulating the expression of genes related to tissue mineralization and the actions of key hormones (17β-estradiol [E2], testosterone, and vitamin D) involved in bone growth and turnover. Boron’s induction of tissue mineralization also underlies boron’s beneficial effects on wound healing.

Wound Healing

Since 1990, boron has been shown to significantly improve wound healing. Application of a 3% boric acid solution to deep wounds reduced the time required in intensive care by two-thirds.8 In 2000, in vitro research using human fibroblasts showed that a boric-acid solution improved wound healing through action on the extracellular matrix.9 Further in vitro studies published in 2002 revealed that these beneficial effects of boron were due to direct actions on specific enzymes found in fibroblasts: elastase, trypsin-like enzymes, collagenase, and alkaline phosphatase.10 The most common cells in animal connective tissue, fibroblasts synthesize the extracellular matrix and collagen and play a critical role in wound healing. Boron facilitates the activity of these key enzymes in fibroblasts, thus improving extracellular-matrix turnover.

Expression of Extracellular-matrix Proteins

Hakki et al7 extended understanding of the mechanisms behind boron’s effects a step further, showing that boron regulates the messenger RNA (mRNA) expression of a wide range of extracellular-matrix proteins, not only those involved in wound repair but also the mineralized tissue-associated proteins, collagen type 1 (COL1), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN). The combined effects of these actions boost osteoblast-cell viability, proliferation, and morphology as well as the mineralization of bone cells.

Further research conducted by other investigators on human bone marrow stromal cells confirmed earlier discoveries of the mechanisms through which boron boosts osteogenic differentiation and continued to add to the list. Boron was also found to increase mRNA expression of alkaline phosphatase and bone morphogenetic proteins (BMPs).11 Several other researchers have now confirmed that boron regulates protein levels of key BMPs—BMP-4, BMP-6, and BMP-7—plus the mRNA expression of runt-related transcription factor 2 (RUNX2).

The BMPs are multifunctional growth factors that belong to the transforming growth factor β (TGF-β) superfamily, and several induce formation of new cartilage and bone. Of the 20 BMP family members that have been identified and characterized to date,12,13 BMP-2, BMP-4, BMP-6, and BMP-7, all of which show transcription and activity regulated by boron, have been found necessary to induce osteoblastic differentiation in primary human, mesenchymal stem cells.14,15

Boron was also determined to regulate production of RUNX2, also known as core-binding factor subunit α-1 (CBF-α1). RUNX2 is essential to osteoblastic differentiation and bone formation and to bone maintenance. It is a transcription factor that works cooperatively with BMPs to stimulate osteoblast gene expression and the differentiation of mesenchymal stem cells into osteoblasts, and it remains active in mature osteoblasts. When active RUNX2 levels are reduced, expression of the genes encoding the main bone-matrix proteins drops, including BSP, OCN, OPN, and COL1.16–19

Regulation of Sex Hormones

Increased levels of sex steroids have been demonstrated in both men and women after boron supplementation.1,20 In 1987, Nielsen et al1 reported that dietary boron repletion in postmenopausal women (n = 13), who were previously on a low-boron diet, significantly increased their serum estradiol (E2) and testosterone levels, particularly for those women whose dietary intake of magnesium was low. In women on a low-magnesium diet, E2 almost doubled, increasing from an average of 21.1 pg/mL to 41.4 pg/mL. Testosterone more than doubled, rising from an average of 0.31 ng/mL to 0.83 ng/mL. Similar increases were seen in the women on an adequate-magnesium diet: E2 rose from an average of 15.5 pg/mL to 38.0 pg/mL, and testosterone increased from 0.38 ng/mL to 0.65 ng/mL. In 1997, Naghii et al21 published findings of a similar increase in serum levels of E2 in healthy males (n = 18) after 4 weeks of dietary supplementation with boron.

After only 1 week of boron supplementation of 6 mg/d, a further study by Naghii et al20 of healthy males (n = 8) found (1) a significant increase in free testosterone, which rose from an average of 11.83 pg/mL to 15.18 pg/mL; and (2) significant decreases in E2, which dropped from 42.33 pg/mL to 25.81 pg/mL. All of the inflammatory biomarkers that were measured also decreased: (1) interleukin (IL) 6, from 1.55 pg/mL to 0.87 pg/mL; (2) high-sensitivity C-reactive protein (hs-CRP) by approximately 50%, a remarkable decrease, from 1460 ng/mL to 795 ng/mL; and (3) tumor necrosis factor α (TNF-α) by approximately 30%, from 12.32 to 9.97 pg/mL. Levels of dihydrotestosterone, cortisol, and vitamin D increased slightly.

The significant decrease in the men’s plasma E2 after 1 week of boron supplementation suggests a higher rate of conversion of total testosterone (T) to free testosterone (FT) in the testosterone metabolic pathway. In support, the ratios of FT/T, T/E2, and FT/E2 were all significantly increased, indicating boron had androgen amplifier effects: (1) FT/T (pg/mL/ng/mL) increased from 3.62 to 4.66; (2) T/E2 (ng/mL) rose from 91.68 to 148; and (3) FT/E2 (ng/mL) from 0.31 to 0.67.

It is well known that approximately 98% of testosterone molecules are bound to proteins in the blood, principally to sex hormone–binding globulin (SHBG), and are not bioavailable because bound hormones cannot exit capillaries.22 Thus, the elevation of unbound free testosterone seen with boron supplementation may have significant beneficial ramifications, particularly in aging men in whom, typically, levels of SHBG increase and levels of FT decrease.23

Prevention of Vitamin-D Deficiency

Boron has been shown to increase serum levels of 25-hydroxyvitamin D3 (25[OH]D3) in animal studies4,24 and of vitamin D–deficient individuals in human studies.25,26 In a clinical trial25 in which middle-aged men and women (n = 15) were placed on a low-boron diet, which was also marginal in magnesium and copper status, for 63 days (0.23 mg B/2000 kcal), 25(OH)D3 rose significantly after boron supplementation (3 mg/d as sodium borate) for an additional 49 days. Levels of 25(OH)D3 rose from an average of 44.9 nM after the 63 days of boron deprivation to 62.4 nM after the 49 days of boron repletion, a 39% increase.

Similar results were seen in an open pilot study of middle-aged individuals (n = 13) predetermined to be vitamin D deficient (serum 25[OH]D3 < 12 ng/mL). Levels of 25(OH)D3 were studied during boron supplementation of 6 mg/d for 60 days using calcium fructoborate, Ca([C6H10O6]2B)2·4H2O, a boron-containing complex that occurs naturally in fruit.26 The study took place in Serbia with supplementation beginning in October and concluding by January; in other words, the study occurred during the fall transition to winter, a time when vitamin-D status would be expected to worsen. Yet, with boron supplementation, 25(OH)D3 levels rose significantly, with an average rise of 20%.27

How does boron exert its hormonal effects? In sum, boron increases the biological half-life and bioavailability of E2 and vitamin D.

Boron Increases Half-life and Bioavailability of Sex Hormones and Vitamin D Boron’s beneficial effects on bone metabolism are due in part to the roles it plays in both producing E2 and in increasing its biological half-life and that of vitamin D. Regarding 17β-estradiol, the simplest and preferred pathway for its production is reduction of the keto group of estrone by a tetrahydroborate salt, potassium borohydride.28
Regarding vitamin D, Miljkovic et al27 proposed in an excellent paper in Medical Hypotheses that boron suppresses the activity of 24-hydroxylase, the microsomal enzyme primarily responsible for catabolism of 25(OH)D3. A number of recent papers, which are discussed in the following text, have provided evidence to support this hypothesis.

The hypothesis by Milijkovic et al27 also accounts for boron’s well-recognized upregulation of 17β-estradiol levels in women, including postmenopausal women receiving hormone replacement therapy, because catabolism of 17β-estradiol is also achieved by microsomal enzymes catalyzing vicinal hydroxylations (eg, 24-hydroxylase). This suggests a more general hypothesis: Nutritional boron can inhibit a range of microsomal enzymes that insert hydroxyl groups vicinal to existing hydroxyls in steroids, which include enzymes that catabolize 17β-estradiol, 25(OH)D3, and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3).29 As noted by Miljkovic et al27:

Boron readily forms covalent complexes with cis-vicinal dihydroxy compounds. Thus, it is conceivable that it can form such a complex with 24,25-dihydroxyvitamin D, the end product of the reaction of 25(OH)D3 with 24-hydroxylase. This postulated complex might either act as a competitive inhibitor of the 24-hydroxylase reaction, or alternatively, perhaps could act to down-regulate expression of the enzyme. Another possibility is that boron is a direct inhibitor of the enzyme at very modest concentrations; indeed, boron can inhibit numerous enzymes …

Therefore, boron’s beneficial hormonal effects are likely to be a result of its general impact on vicinal hydroxylations of steroids.

In chemistry, vicinal stands for any 2 functional groups that are bonded to 2 adjacent carbon atoms. Hydroxylation is the addition of a hydroxyl group (-OH). Boronic acids’ unique feature is their ability to form reversible covalent complexes with molecules containing vicinal hydroxyl groups. Boronic acids act as Lewis acids, substances that can accept a lone pair of electrons from another molecule in completing the stable group of one of their own atoms. For example, H+ is a Lewis acid because it can accept a lone pair, completing its stable form, which requires 2 electrons. The current definition of a Lewis acid is:

… a molecular entity (and the corresponding chemical species) that is an electron-pair acceptor, and therefore, able to react with a Lewis base to form a Lewis adduct by sharing the electron pair furnished by the Lewis base. A Lewis base is any species that donates a pair of electrons to a Lewis acid to form a Lewis adduct.33

Deactivation of Vitamin D

Cholecalciferol (vitamin D3) is both activated and degraded via hydroxylation. Synthesis of vitamin D begins in the skin as a nonenzymatic process when the absorption of ultraviolet B (UVB) radiation in sunlight results in conversion of 7-dehydrocholesterol, a metabolite of cholesterol stored in the skin, to precholecalciferol. Precholecalciferol is immediately converted into cholecalciferol (vitamin D3) and transported to the liver where it undergoes hydroxylation by 25-hydroxylase. Actually, 75% of serum 25(OH)D3 arises from the action of 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP2R1), and an, as yet, unidentified enzyme is responsible for the remaining 25% of 25-hydroxylation of cholecalciferol.30

The result of this 25-hydroxylation is the formation of calcidiol (25[OH]D3). A second hydroxylation takes place in the kidney, where calcidiol undergoes hydroxylation by 1α-hydroxylase (CYP27B1) at the C-1 position to form the hormonal, most-active metabolite, calcitriol (1,25[OH]2D3). The 24-hydroxylation of 25(OH)D3 and calcitriol, which is accomplished by 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1), leads to the degradation of these vitamin-D metabolites.31

As already mentioned, serum concentrations of both 25(OH)D3 and 17β-estradiol increase when boron is supplemented. Because this effect is seen in postmenopausal women receiving hormone replacement therapy, a reduction in E2 catabolism, rather than increased E2 synthesis, is responsible. Each of the major routes of E2 catabolism involve hydroxylations (ie, the introduction of a vicinal hydroxyl group at the 2, 4, or 16 position of 17β-estradiol), which is already hydroxylated at the 3 and 17 positions. This addition indicates that boron is a potent inhibitor for microsomal enzymes that catalyze the insertion of hydroxyl groups vicinal to existing hydroxyl groups in steroids.

Boron May Improve the Effects of Vitamin D Supplementation in “Nonresponders”

Support for boron’s potential for beneficial effects on vitamin D levels is suggested by recent research investigating the relationship between levels of DNA methylation of CYP24A1, a 24-hydroxylase enzyme, and CYP2R1, a 25-hydroxylase enzyme, and also by examining postmenopausal women’s ability to increase serum 25(OH)D3 in response to vitamin-D supplementation.32

Researchers randomly assigned 446 white, postmenopausal women to a calcium and vitamin D intervention, 1100 IU/day, for at least 12 months. From these subjects, 18 with the highest 12-month increase in serum 25(OH)D3 were selected as responders, and 18 with the lowest 12-month increase in serum 25(OH)D3 were selected as nonresponders. Levels of deoxyribonucleic acid (DNA) methylation for the 2 groups were compared.

Methylation silences or shuts down activity in these CpG sites; thus, greater methylation leads to lessened production of the hydroxylase. Responders had significantly lower baseline levels of DNA methylation in the promoter region of CYP2R1—a 25-hydroxylase that activates vitamin D—than nonresponders had, 8% versus 30%, respectively. That finding indicated a greater production of 25-hydroxylase, and, thus, greater potential for vitamin-D activation.

Responders also had lower baseline levels of DNA methylation in the promoter region of CYP24A1, a 24-hydroxylase that degrades vitamin D, than the nonresponders had, 13% versus 32%, respectively. This finding possibly indicates a balance in responders’ ability to both activate and then degrade vitamin D. Although nonresponders’ levels of DNA methylation of CYP24A1 were greater, it is unknown whether the 24-hydroxylase enzymes that they produced had a higher-than-average rate of activity. Boron was not included in this investigation, but it would have been germane to have assayed subjects’ boron intake and serum levels because boron inhibits the activity of 24-hydroxylase.

Two specific examples of that process are the E2 hydroxylases and 24-hydroxylase, the enzymes that catalyze the conversion of 25(OH)D3 and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) into 24-hydroxylated products, which constitute the degradation products of the vitamin-D molecule. A summary of the activation and deactivation of vitamin D.34

Magnesium Absorption

Boron significantly improves magnesium absorption and deposition in bone, yet another beneficial effect of boron’s inhibition of 17β-estradiol degradation. Thus, boron is a factor in magnesium’s myriad beneficial effects. Magnesium’s importance, in bone alone, is illustrative of the widespread ramifications of boron insufficiency.

Approximately 60% of the magnesium in the human body is found in bone, where it is a cofactor for key enzymes that regulate calcium metabolism. The majority of magnesium in bone resides on cortical bone, an integral part of the structure of apatite crystal.35 Apart from its structural role in apatite crystals, magnesium is required in osteoblasts and osteoclasts and in all living cells, within which magnesium is fundamental for adenosine triphosphate (ATP) production and serves as the cofactor of more than 300 enzymes involved in lipid, protein, and nucleic acid synthesis. Because of its positive charge, magnesium stabilizes cell membranes, balances the actions of calcium, and functions as a signal transducer.31

Anti-inflammatory Effects

A number of papers have indicated that boron reduces levels of inflammatory biomarkers.20,36,37 In a recent human trial involving healthy male volunteers (n = 8), a significant increase in concentrations of plasma boron occurred 6 hours after supplementation with 11.6 mg of boron, coupled with significant decreases in levels of hs-CRP and TNF-α. One week of boron supplementation 10 mg/d resulted in a 20% decrease in the plasma concentration of TNF-α, from 12.32 to 9.97 pg/mL, and in remarkable decreases (approximately 50%) in plasma concentration of hs-CRP, from 1460 to 795 ng/mL, and of IL-6, from 1.55 to 0.87 pg/mL.

Is boron adequacy important? Consider that elevated hs-CRP is associated with an increased risk for breast cancer,38 obesity and metabolic syndrome (MetS) in children,39 atherosclerosis, unstable angina, insulin resistance, type 2 diabetes,40,41 nonalcoholic fatty liver disease (NAFLD),42,43 metastatic prostate cancer,44 lung cancer,45 adult depression, depression in childhood and psychosis in young adult life,46,47 coronary heart disease, and stroke.48–51

Anti-inflammatory Effects in Osteoarthritis

Epidemiological evidence, case reports, and controlled animal and human studies have provided evidence for the use of boron as a safe and effective treatment for osteoarthritis (OA).52–54 Examining the relationship between boron administration and OA prevalence around the world, researchers discovered that in areas where boron intake is greater than or equal to 1 mg/d, the estimated incidence of arthritis ranges from 20% to 70%. In contrast, in areas where boron intake is usually 3 to 10 mg/d, estimated incidence of arthritis ranges from 0% to 10%.55 The boron concentration has been found to be lower in the femur heads, bones, and synovial fluid of OA patients compared with individuals without OA.56

Analysis of animal studies, in which rats with induced arthritis benefited from orally or intraperitoneally administered boron, revealed that boron downregulates production and activity of serine protease enzymes involved in the inflammatory response.57 Human studies of boron deprivation and repletion have shown that boron significantly increases erythrocyte superoxide dismutase (SOD) activity. In a study in which 63 days of boron depletion were followed by 49 days of boron supplementation 3 mg/d, SOD rose from 3091 U/g Hb to 3231 U/g Hb in men older than 45 years, from 2666 U/g Hb to 3169 U/g Hb in postmenopausal women, and from 2520 U/g Hb to 3327 U/g Hb in postmenopausal women on estrogen therapy.58

Human clinical evidence for boron’s use in the treatment of OA patients was first provided by a doubleblind, placebo-controlled supplementation trial conducted in Australia, in which a significantly favorable response to a supplement of 6 mg of boron per day (sodium tetraborate decahydrate) was seen in 20 subjects with OA; 50% of subjects receiving supplemental boron improved compared with only 10% of those receiving the placebo.61

Clinical Effects of Hypomagnesemia

In addition to its direct effects on the structure and cells of the skeleton, magnesium impacts bone indirectly by affecting the homeostasis of the 2 master regulators of calcium homeostasis (ie, parathyroid hormone [PTH] and 1,25[OH]2D3).59 PTH signaling involves the increase of cyclic adenosine monophosphate (cAMP) through the activation of adenylate cyclase, which requires magnesium.

Hypomagnesemia impairs secretion of PTH and renders target organs refractory to PTH. Reduced secretion of PTH or impaired peripheral response to the hormone leads to low serum concentrations of 25(OH)D3. In addition, the hydroxylase enzyme 25-hydroxycholecalciferol-1-hydroxylase, which is responsible for production of the most active, hormonal form of vitamin D, calcitriol, requires magnesium as its cofactor. Consequently magnesium deficiency impairs calcitriol production.

Hypomagnesemia promotes inflammation.60 Substance P is released at high levels in magnesium deficiency, and the levels of proinflammatory cytokines—TNF-α, IL-1, and IL-6— increase both in the serum and the bone marrow. Magnesium also plays an important role in carbohydrate metabolism; its deficiency provokes and worsens insulin resistance.

Insulin resistance and resulting high glucose concentrations (>12 mM) alter the biomineralization process in osteoblastic cells so that although a number of factors promoting osteoblast activity are triggered, less calcium is deposited. High glucose increases mRNA expression of the receptor activator of nuclear factor kappa B ligand (RANKL), OCN, BSP, and RUNX2, but it decreases expression of the decoy for RANKL (ie, osteoprotegerin) and increases mRNA expression of proinflammatory cytokines (eg, IL-6, IL-10, and TNF-α). Osteoblastic cells cultured in normal glucose conditions had a Ca/P ratio of 1.48 and 1.60 at 7 days and 14 days, respectively. In contrast, mineral deposits formed by osteoblastic cells cultured with high d-(+)-glucose concentrations had Ca/P ratios of 0.78 and 1.29 at 7 days and 14 days, respectively. These findings represent just a few of the ways in which hypomagnesemia causes accelerated bone loss. Adequate boron intake of 3 mg/d can help prevent hypomagnesemia.

In vitro studies have shown anti-inflammatory effects of calcium fructoborate—a naturally occurring, plant-based, boron-carbohydrate complex—on cellular cultures,62 and an open-label pilot study (n = 20) found that calcium fructoborate had highly positive effects on OA symptoms.26 In the 8-week pilot study, OA patients were divided into 2 groups, those with mild and medium forms of OA and those with severe cases. Two assessment measures were used, the Western Ontario and McMaster Universities Arthritis Index (WOMAC) and the Newnham criteria. Mild-to-medium cases received 6 mg/d of supplemental boron; severe cases received 12 mg/d. In subjects with mild and medium OA, average pain reduction was 62.5% in 4 weeks and 70.8% in 8 weeks. In the first 4 weeks, 80% of mild-to-medium OA subjects reduced or eliminated their analgesic (ibuprofen) use. By 8 weeks, 67% had stopped using the nonsteroidal anti-inflammatory drug (NSAID) medication. Joint rigidity disappeared in one-half of the mild and medium OA patients in the first 4 weeks and decreased in the remaining one-half by 87.5% on average. By week 8, all subjects with mild- and medium-level OA were rigidity free. Mobility and flexibility were significantly improved in 71.4% of subjects at 4 weeks and in 77.8% at 8 weeks.

High-sensitivity C-reactive Protein

C-reactive protein (CRP) is an acute-phase protein produced in the liver in response to increased immune-cell production of proinflammatory cytokines (eg, IL-1, IL-6, IL-8, and TNF-α). CRP is a known predictor of risk for cardiovascular disease (CVD), heart attack, and stroke. Studies have also shown a clear link between above-normal levels of CRP and OA, periodontal disease, and risk for fracture. In Japan, where women typically have substantially lower levels of CRP than their Caucasian counterparts, women whose CRP levels were above what is normal for the Japanese had more than double the risk for fracture—2.22 if in the medium quartile and 2.40 if in the quartile with the highest CRP levels.63

Two tests can be used to evaluate CRP: CRP and hs-CRP. Both tests measure the same molecule in the blood. CRP is the standard test and measures a much wider, higher range of CRP levels than hs-CRP, but CRP does not do well in capturing the lower ranges, which are important in determining whether low-level, chronic inflammation is present and which may be a contributing factor to an ongoing disease process. The test for hs-CRP accurately detects the lower concentrations of CRP. People with chronically elevated inflammation (eg, individuals with conditions such as arthritis or periodontal disease) should have the CRP, not the hs-CRP test run. Their CRP levels will be very high, often too high to be meaningful or even measured using the hs-CRP test. The hs-CRP test is the better choice for apparently healthy people to determine whether they have low-grade chronic inflammation. The hs-CRP test measures CRP in the range from 0.5 to 10 mg/L. The standard CRP test measures CRP in the range from 10 to 1000 mg/L.

Hs-CRP usually is ordered as one of several tests in a cardiovascular risk profile, often together with tests for cholesterol and triglycerides, because the best way to predict cardiovascular risk is to combine a good marker for inflammation, such as hs-CRP, with the lipid profile. Research has now shown that healthy people whose hs-CRP results are in the high end of the normal range, above 3.0 mg/L, have 1.5 to 4 times the risk of having a heart attack compared with those whose hs-CRP values are at the low end of the normal range, 1.0 mg/L or less.

Because the hs-CRP test serves as a marker for inflammation, it is important that the patient is not recently recovering from a cold, flu, other infection, or injury when the test is run. As noted earlier, CRP is an acute-phase protein, so levels dramatically rise in response to any recent illness, infection, or trauma, including dental work. For that reason, any acute inflammation will raise the amount of CRP and give a falsely elevated estimate of risk. Also, patients should be instructed not to take an NSAID, as those medications will temporarily depress CRP levels, as will statins, giving a falsely lowered estimate of risk.

Women on conventional hormone replacement therapy (HRT) (eg, Premarin or Provera), but not on bioidentical hormone replacement therapy (BHRT), have been shown to have elevated hs-CRP levels, yet another reason to consider use of BHRT rather than HRT.

In the severe OA group, average pain reduction was 47.9% at 4 weeks and 64.5% at 8 weeks. In the first 4 weeks, 40% of subjects with severe OA reduced or eliminated their analgesic (ibuprofen) use. By week 8, 75% had quit using their NSAID medication (ibuprofen). Joint rigidity disappeared in one-half of the severe OA patients in the first 4 weeks. In the remaining one-half, joint rigidity decreased significantly, an average rigidity reduction of 50%. Mobility and flexibility were significantly improved in 50% of severe OA subjects at 4 weeks and in 62.5% at 8 weeks.

Based on the results of animal studies,62 the researchers hypothesized that boron’s anti-inflammatory effects result from inhibition of the oxidative burst by scavenging cells (leukocytes) and excessive activity by neutrophils (ie, white cells that scavenge debris) and invaders outside of the circulatory system. Boron also boosts free-radical scavenging by raising levels of a triumvirate of antioxidant enzymes in blood and cells: SOD, catalase, and glutathione peroxidase.

Scorei et al54 then conducted a double-blind, placebo-controlled pilot study to evaluate the effects of different dosages of calcium fructoborate on systemic inflammation and dyslipidemia markers in middle-aged people with primary OA. Study subjects (n = 72) were randomly assigned to 4 groups: (1) group 1 received 1.5 mg of boron, 2 ×/d; (2) group 2 was given 3 mg, 2 ×/d; (3) group 3 received 6 mg, 2 ×/d; and (4) group 4 received placebo, 2 ×/d. Fifteen days of dietary supplementation with calcium fructoborate lowered inflammatory biomarkers— CRP, fibrinogen (FBR), and erythrocyte sedimentation rate (ESR)—in all groups except the placebo group; no effect was seen on lipids. In groups 1, 2, and 3 (ie, those supplemented with boron in the form of calcium fructoborate), significant decreases occurred in ESR levels: a drop of −10.25%, −11.9%, and −8.5% in groups 1, 2, and 3, respectively, compared with baseline. In the placebo group, the ESR level rose 36.36%. FBR also dropped in those supplemented: −13.73 in group 1, −2.05 in group 2, and −4.18 in group 3. In the placebo group, FBR rose 4.10. CRP also dropped in all supplemented groups: −60.25 in group 1, −26.66 in group 2, and −17.54 in group 3. In the placebo group, CRP increased 5.47.

Most recently, calcium fructoborate 110 mg 2 ×/d, which provides approximately 3 mg of boron 2 ×/d or 6 mg/d, was shown to improve knee discomfort within the first 14 days of treatment. In this study, subjects with self-reported knee discomfort (n = 60) were randomized into 2 groups given either calcium fructoborate or placebo.64 At both 7 days and 14 days, significant reductions in the mean, within-subject changes in scores, as measured using the WOMAC index and the McGill Pain Questionnaire (MPQ), were seen in the group supplemented with calcium fructoborate when compared with the placebo group. Estimated treatment differences for the MPQ score were −5.8 and −8.9 at days 7 and 14, respectively. Estimated differences for the WOMAC score were −5.3 and −13.73 at days 7 and 14, respectively. Negative values indicate greater reductions in reported discomfort. No changes in the WOMAC or MPQ scores were seen in the placebo group.65

CRP levels are typically higher in patients with OA compared with normal controls, and CRP levels with reference values above 0.5 mg/dL in OA patients are associated with disease progression.66,67 As noted earlier, in addition to OA and CVD, higher levels of CRP are also associated with NAFLD, MetS, type 2 diabetes, obesity, depression, kidney disease, and osteoporosis. Boron, in combination with plant-sourced calcium, as calcium fructoborate, has been shown to significantly reduce blood levels of CRP in humans.68

Protection Against Malathion-induced Oxidative Stress

In a recent study, boron protected animals chronically exposed to low levels of malathion, a widely used pesticide that causes oxidative stress even at the low levels at which humans are exposed to it in the food supply.69 Malathion administration 100 mg/kg/d by gastric gavage increased malondialdehyde, nitric oxide and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, and markers of liver damage. It decreased acetylcholinesterase and reduced glutathione; superoxide dismutase; and catalase activities in blood, liver, kidney, and brain tissues. Administration of boron 5, 10, and 20 mg/kg/d reversed malathion-induced oxidative stress, lipid peroxidation, and suppression of antioxidant enzyme activity. Boron decreased malathion-induced oxidative stress, enhanced antioxidant defense mechanisms, and regenerated damaged liver, kidney, and brain tissues in rats.

Rest is here
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712861/
 
Danes

Danes

Well-known member
Awards
3
  • RockStar
  • Established
  • First Up Vote
Nothing Boring About Boron

Lara Pizzorno, MDiv, MA, LMT

Additional article information

Abstract

The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis; osteoarthritis (OA); or breast, prostate, or lung cancer.

The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and, possibly, as recent research suggests, for the evolution of life on Earth. The current review focuses primarily on boron’s most salient effects on human health, including its impact on bone development and regeneration, wound healing, the production and metabolism of sex steroids and vitamin D, and the absorption and use of calcium and magnesium. In addition, boron has anti-inflammatory effects that can help alleviate arthritis and improve brain function and has demonstrated such significant anticancer effects that boronated compounds are now being used in the treatment of several types of cancer. A summary of the evidence suggesting that boron should be given consideration as an essential micronutrient is provided, together with leading dietary sources and intake recommendations.

Salient Effects

Bone Growth and Maintenance

Scientists have known for many years that boron is essential for healthy bones. In 1985, the US Department of Agriculture (USDA) conducted an experiment in which postmenopausal women (n = 12) who had been put on a low-boron diet (0.25 mg/d for 119 d) were supplemented with 3 mg/d of boron during two 28-day trials. In one trial, magnesium intake was low; in the other, magnesium intake was adequate. With boron supplementation, the women’s daily urinary excretion of calcium was reduced by 44%. The reduction in calcium loss resulting from boron supplementation was 52 mg/d when the women were low in magnesium and 22 mg/d when magnesium levels were adequate.1

Boron plays an important role in osteogenesis, and its deficiency has been shown to adversely impact bone development and regeneration.2 Boron influences the production and activity of steroid hormones, actions via which this trace mineral is involved in the prevention of calcium loss and bone demineralization. Boron supplementation has repeatedly been shown to markedly reduce urinary excretion of both calcium and magnesium and to increase serum levels of estradiol and calcium absorption in peri- and postmenopausal women.1,3 Boron also beneficially impacts vitamin-D utilization. Supplementation with boron stimulates bone growth in vitamin-D deficient animals and alleviates dysfunctions in mineral metabolism characteristic of vitamin-D deficiency.4

Animal studies published in 20085 and 20096 found that healing of the alveolar bone—a ridge of compact bone that contains the tooth sockets on the maxillae and mandible (ie, the bones that hold teeth)—was inhibited in boron-deficient rats. Compared with boron-adequate rats (3 mg/kg/d of boron in the diet) when evaluated at 7 and 14 days, boron-deficient animals (0.07 mg/kg/d boron in the diet) had significant reductions in osteoblast surface (57% and 87% at 7 d and 14 d, respectively) concomitant with increases in quiescent surface (120% and 126% at 7 d and 14 d, respectively), indicating that boron deficiency can result in impaired bone healing due to a marked reduction in osteogenesis.

In 2010, Hakki et al7 published research investigating the mechanisms underlying boron’s effects on osteogenesis. Boron was determined to induce mineralization of osteoblasts by regulating the expression of genes related to tissue mineralization and the actions of key hormones (17β-estradiol [E2], testosterone, and vitamin D) involved in bone growth and turnover. Boron’s induction of tissue mineralization also underlies boron’s beneficial effects on wound healing.

Wound Healing

Since 1990, boron has been shown to significantly improve wound healing. Application of a 3% boric acid solution to deep wounds reduced the time required in intensive care by two-thirds.8 In 2000, in vitro research using human fibroblasts showed that a boric-acid solution improved wound healing through action on the extracellular matrix.9 Further in vitro studies published in 2002 revealed that these beneficial effects of boron were due to direct actions on specific enzymes found in fibroblasts: elastase, trypsin-like enzymes, collagenase, and alkaline phosphatase.10 The most common cells in animal connective tissue, fibroblasts synthesize the extracellular matrix and collagen and play a critical role in wound healing. Boron facilitates the activity of these key enzymes in fibroblasts, thus improving extracellular-matrix turnover.

Expression of Extracellular-matrix Proteins

Hakki et al7 extended understanding of the mechanisms behind boron’s effects a step further, showing that boron regulates the messenger RNA (mRNA) expression of a wide range of extracellular-matrix proteins, not only those involved in wound repair but also the mineralized tissue-associated proteins, collagen type 1 (COL1), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN). The combined effects of these actions boost osteoblast-cell viability, proliferation, and morphology as well as the mineralization of bone cells.

Further research conducted by other investigators on human bone marrow stromal cells confirmed earlier discoveries of the mechanisms through which boron boosts osteogenic differentiation and continued to add to the list. Boron was also found to increase mRNA expression of alkaline phosphatase and bone morphogenetic proteins (BMPs).11 Several other researchers have now confirmed that boron regulates protein levels of key BMPs—BMP-4, BMP-6, and BMP-7—plus the mRNA expression of runt-related transcription factor 2 (RUNX2).

The BMPs are multifunctional growth factors that belong to the transforming growth factor β (TGF-β) superfamily, and several induce formation of new cartilage and bone. Of the 20 BMP family members that have been identified and characterized to date,12,13 BMP-2, BMP-4, BMP-6, and BMP-7, all of which show transcription and activity regulated by boron, have been found necessary to induce osteoblastic differentiation in primary human, mesenchymal stem cells.14,15

Boron was also determined to regulate production of RUNX2, also known as core-binding factor subunit α-1 (CBF-α1). RUNX2 is essential to osteoblastic differentiation and bone formation and to bone maintenance. It is a transcription factor that works cooperatively with BMPs to stimulate osteoblast gene expression and the differentiation of mesenchymal stem cells into osteoblasts, and it remains active in mature osteoblasts. When active RUNX2 levels are reduced, expression of the genes encoding the main bone-matrix proteins drops, including BSP, OCN, OPN, and COL1.16–19

Regulation of Sex Hormones

Increased levels of sex steroids have been demonstrated in both men and women after boron supplementation.1,20 In 1987, Nielsen et al1 reported that dietary boron repletion in postmenopausal women (n = 13), who were previously on a low-boron diet, significantly increased their serum estradiol (E2) and testosterone levels, particularly for those women whose dietary intake of magnesium was low. In women on a low-magnesium diet, E2 almost doubled, increasing from an average of 21.1 pg/mL to 41.4 pg/mL. Testosterone more than doubled, rising from an average of 0.31 ng/mL to 0.83 ng/mL. Similar increases were seen in the women on an adequate-magnesium diet: E2 rose from an average of 15.5 pg/mL to 38.0 pg/mL, and testosterone increased from 0.38 ng/mL to 0.65 ng/mL. In 1997, Naghii et al21 published findings of a similar increase in serum levels of E2 in healthy males (n = 18) after 4 weeks of dietary supplementation with boron.

After only 1 week of boron supplementation of 6 mg/d, a further study by Naghii et al20 of healthy males (n = 8) found (1) a significant increase in free testosterone, which rose from an average of 11.83 pg/mL to 15.18 pg/mL; and (2) significant decreases in E2, which dropped from 42.33 pg/mL to 25.81 pg/mL. All of the inflammatory biomarkers that were measured also decreased: (1) interleukin (IL) 6, from 1.55 pg/mL to 0.87 pg/mL; (2) high-sensitivity C-reactive protein (hs-CRP) by approximately 50%, a remarkable decrease, from 1460 ng/mL to 795 ng/mL; and (3) tumor necrosis factor α (TNF-α) by approximately 30%, from 12.32 to 9.97 pg/mL. Levels of dihydrotestosterone, cortisol, and vitamin D increased slightly.

The significant decrease in the men’s plasma E2 after 1 week of boron supplementation suggests a higher rate of conversion of total testosterone (T) to free testosterone (FT) in the testosterone metabolic pathway. In support, the ratios of FT/T, T/E2, and FT/E2 were all significantly increased, indicating boron had androgen amplifier effects: (1) FT/T (pg/mL/ng/mL) increased from 3.62 to 4.66; (2) T/E2 (ng/mL) rose from 91.68 to 148; and (3) FT/E2 (ng/mL) from 0.31 to 0.67.

It is well known that approximately 98% of testosterone molecules are bound to proteins in the blood, principally to sex hormone–binding globulin (SHBG), and are not bioavailable because bound hormones cannot exit capillaries.22 Thus, the elevation of unbound free testosterone seen with boron supplementation may have significant beneficial ramifications, particularly in aging men in whom, typically, levels of SHBG increase and levels of FT decrease.23

Prevention of Vitamin-D Deficiency

Boron has been shown to increase serum levels of 25-hydroxyvitamin D3 (25[OH]D3) in animal studies4,24 and of vitamin D–deficient individuals in human studies.25,26 In a clinical trial25 in which middle-aged men and women (n = 15) were placed on a low-boron diet, which was also marginal in magnesium and copper status, for 63 days (0.23 mg B/2000 kcal), 25(OH)D3 rose significantly after boron supplementation (3 mg/d as sodium borate) for an additional 49 days. Levels of 25(OH)D3 rose from an average of 44.9 nM after the 63 days of boron deprivation to 62.4 nM after the 49 days of boron repletion, a 39% increase.

Similar results were seen in an open pilot study of middle-aged individuals (n = 13) predetermined to be vitamin D deficient (serum 25[OH]D3 < 12 ng/mL). Levels of 25(OH)D3 were studied during boron supplementation of 6 mg/d for 60 days using calcium fructoborate, Ca([C6H10O6]2B)2·4H2O, a boron-containing complex that occurs naturally in fruit.26 The study took place in Serbia with supplementation beginning in October and concluding by January; in other words, the study occurred during the fall transition to winter, a time when vitamin-D status would be expected to worsen. Yet, with boron supplementation, 25(OH)D3 levels rose significantly, with an average rise of 20%.27

How does boron exert its hormonal effects? In sum, boron increases the biological half-life and bioavailability of E2 and vitamin D.

Boron Increases Half-life and Bioavailability of Sex Hormones and Vitamin D Boron’s beneficial effects on bone metabolism are due in part to the roles it plays in both producing E2 and in increasing its biological half-life and that of vitamin D. Regarding 17β-estradiol, the simplest and preferred pathway for its production is reduction of the keto group of estrone by a tetrahydroborate salt, potassium borohydride.28
Regarding vitamin D, Miljkovic et al27 proposed in an excellent paper in Medical Hypotheses that boron suppresses the activity of 24-hydroxylase, the microsomal enzyme primarily responsible for catabolism of 25(OH)D3. A number of recent papers, which are discussed in the following text, have provided evidence to support this hypothesis.

The hypothesis by Milijkovic et al27 also accounts for boron’s well-recognized upregulation of 17β-estradiol levels in women, including postmenopausal women receiving hormone replacement therapy, because catabolism of 17β-estradiol is also achieved by microsomal enzymes catalyzing vicinal hydroxylations (eg, 24-hydroxylase). This suggests a more general hypothesis: Nutritional boron can inhibit a range of microsomal enzymes that insert hydroxyl groups vicinal to existing hydroxyls in steroids, which include enzymes that catabolize 17β-estradiol, 25(OH)D3, and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3).29 As noted by Miljkovic et al27:

Boron readily forms covalent complexes with cis-vicinal dihydroxy compounds. Thus, it is conceivable that it can form such a complex with 24,25-dihydroxyvitamin D, the end product of the reaction of 25(OH)D3 with 24-hydroxylase. This postulated complex might either act as a competitive inhibitor of the 24-hydroxylase reaction, or alternatively, perhaps could act to down-regulate expression of the enzyme. Another possibility is that boron is a direct inhibitor of the enzyme at very modest concentrations; indeed, boron can inhibit numerous enzymes …

Therefore, boron’s beneficial hormonal effects are likely to be a result of its general impact on vicinal hydroxylations of steroids.

In chemistry, vicinal stands for any 2 functional groups that are bonded to 2 adjacent carbon atoms. Hydroxylation is the addition of a hydroxyl group (-OH). Boronic acids’ unique feature is their ability to form reversible covalent complexes with molecules containing vicinal hydroxyl groups. Boronic acids act as Lewis acids, substances that can accept a lone pair of electrons from another molecule in completing the stable group of one of their own atoms. For example, H+ is a Lewis acid because it can accept a lone pair, completing its stable form, which requires 2 electrons. The current definition of a Lewis acid is:

… a molecular entity (and the corresponding chemical species) that is an electron-pair acceptor, and therefore, able to react with a Lewis base to form a Lewis adduct by sharing the electron pair furnished by the Lewis base. A Lewis base is any species that donates a pair of electrons to a Lewis acid to form a Lewis adduct.33

Deactivation of Vitamin D

Cholecalciferol (vitamin D3) is both activated and degraded via hydroxylation. Synthesis of vitamin D begins in the skin as a nonenzymatic process when the absorption of ultraviolet B (UVB) radiation in sunlight results in conversion of 7-dehydrocholesterol, a metabolite of cholesterol stored in the skin, to precholecalciferol. Precholecalciferol is immediately converted into cholecalciferol (vitamin D3) and transported to the liver where it undergoes hydroxylation by 25-hydroxylase. Actually, 75% of serum 25(OH)D3 arises from the action of 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP2R1), and an, as yet, unidentified enzyme is responsible for the remaining 25% of 25-hydroxylation of cholecalciferol.30

The result of this 25-hydroxylation is the formation of calcidiol (25[OH]D3). A second hydroxylation takes place in the kidney, where calcidiol undergoes hydroxylation by 1α-hydroxylase (CYP27B1) at the C-1 position to form the hormonal, most-active metabolite, calcitriol (1,25[OH]2D3). The 24-hydroxylation of 25(OH)D3 and calcitriol, which is accomplished by 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1), leads to the degradation of these vitamin-D metabolites.31

As already mentioned, serum concentrations of both 25(OH)D3 and 17β-estradiol increase when boron is supplemented. Because this effect is seen in postmenopausal women receiving hormone replacement therapy, a reduction in E2 catabolism, rather than increased E2 synthesis, is responsible. Each of the major routes of E2 catabolism involve hydroxylations (ie, the introduction of a vicinal hydroxyl group at the 2, 4, or 16 position of 17β-estradiol), which is already hydroxylated at the 3 and 17 positions. This addition indicates that boron is a potent inhibitor for microsomal enzymes that catalyze the insertion of hydroxyl groups vicinal to existing hydroxyl groups in steroids.

Boron May Improve the Effects of Vitamin D Supplementation in “Nonresponders”

Support for boron’s potential for beneficial effects on vitamin D levels is suggested by recent research investigating the relationship between levels of DNA methylation of CYP24A1, a 24-hydroxylase enzyme, and CYP2R1, a 25-hydroxylase enzyme, and also by examining postmenopausal women’s ability to increase serum 25(OH)D3 in response to vitamin-D supplementation.32

Researchers randomly assigned 446 white, postmenopausal women to a calcium and vitamin D intervention, 1100 IU/day, for at least 12 months. From these subjects, 18 with the highest 12-month increase in serum 25(OH)D3 were selected as responders, and 18 with the lowest 12-month increase in serum 25(OH)D3 were selected as nonresponders. Levels of deoxyribonucleic acid (DNA) methylation for the 2 groups were compared.

Methylation silences or shuts down activity in these CpG sites; thus, greater methylation leads to lessened production of the hydroxylase. Responders had significantly lower baseline levels of DNA methylation in the promoter region of CYP2R1—a 25-hydroxylase that activates vitamin D—than nonresponders had, 8% versus 30%, respectively. That finding indicated a greater production of 25-hydroxylase, and, thus, greater potential for vitamin-D activation.

Responders also had lower baseline levels of DNA methylation in the promoter region of CYP24A1, a 24-hydroxylase that degrades vitamin D, than the nonresponders had, 13% versus 32%, respectively. This finding possibly indicates a balance in responders’ ability to both activate and then degrade vitamin D. Although nonresponders’ levels of DNA methylation of CYP24A1 were greater, it is unknown whether the 24-hydroxylase enzymes that they produced had a higher-than-average rate of activity. Boron was not included in this investigation, but it would have been germane to have assayed subjects’ boron intake and serum levels because boron inhibits the activity of 24-hydroxylase.

Two specific examples of that process are the E2 hydroxylases and 24-hydroxylase, the enzymes that catalyze the conversion of 25(OH)D3 and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) into 24-hydroxylated products, which constitute the degradation products of the vitamin-D molecule. A summary of the activation and deactivation of vitamin D.34

Magnesium Absorption

Boron significantly improves magnesium absorption and deposition in bone, yet another beneficial effect of boron’s inhibition of 17β-estradiol degradation. Thus, boron is a factor in magnesium’s myriad beneficial effects. Magnesium’s importance, in bone alone, is illustrative of the widespread ramifications of boron insufficiency.

Approximately 60% of the magnesium in the human body is found in bone, where it is a cofactor for key enzymes that regulate calcium metabolism. The majority of magnesium in bone resides on cortical bone, an integral part of the structure of apatite crystal.35 Apart from its structural role in apatite crystals, magnesium is required in osteoblasts and osteoclasts and in all living cells, within which magnesium is fundamental for adenosine triphosphate (ATP) production and serves as the cofactor of more than 300 enzymes involved in lipid, protein, and nucleic acid synthesis. Because of its positive charge, magnesium stabilizes cell membranes, balances the actions of calcium, and functions as a signal transducer.31

Anti-inflammatory Effects

A number of papers have indicated that boron reduces levels of inflammatory biomarkers.20,36,37 In a recent human trial involving healthy male volunteers (n = 8), a significant increase in concentrations of plasma boron occurred 6 hours after supplementation with 11.6 mg of boron, coupled with significant decreases in levels of hs-CRP and TNF-α. One week of boron supplementation 10 mg/d resulted in a 20% decrease in the plasma concentration of TNF-α, from 12.32 to 9.97 pg/mL, and in remarkable decreases (approximately 50%) in plasma concentration of hs-CRP, from 1460 to 795 ng/mL, and of IL-6, from 1.55 to 0.87 pg/mL.

Is boron adequacy important? Consider that elevated hs-CRP is associated with an increased risk for breast cancer,38 obesity and metabolic syndrome (MetS) in children,39 atherosclerosis, unstable angina, insulin resistance, type 2 diabetes,40,41 nonalcoholic fatty liver disease (NAFLD),42,43 metastatic prostate cancer,44 lung cancer,45 adult depression, depression in childhood and psychosis in young adult life,46,47 coronary heart disease, and stroke.48–51

Anti-inflammatory Effects in Osteoarthritis

Epidemiological evidence, case reports, and controlled animal and human studies have provided evidence for the use of boron as a safe and effective treatment for osteoarthritis (OA).52–54 Examining the relationship between boron administration and OA prevalence around the world, researchers discovered that in areas where boron intake is greater than or equal to 1 mg/d, the estimated incidence of arthritis ranges from 20% to 70%. In contrast, in areas where boron intake is usually 3 to 10 mg/d, estimated incidence of arthritis ranges from 0% to 10%.55 The boron concentration has been found to be lower in the femur heads, bones, and synovial fluid of OA patients compared with individuals without OA.56

Analysis of animal studies, in which rats with induced arthritis benefited from orally or intraperitoneally administered boron, revealed that boron downregulates production and activity of serine protease enzymes involved in the inflammatory response.57 Human studies of boron deprivation and repletion have shown that boron significantly increases erythrocyte superoxide dismutase (SOD) activity. In a study in which 63 days of boron depletion were followed by 49 days of boron supplementation 3 mg/d, SOD rose from 3091 U/g Hb to 3231 U/g Hb in men older than 45 years, from 2666 U/g Hb to 3169 U/g Hb in postmenopausal women, and from 2520 U/g Hb to 3327 U/g Hb in postmenopausal women on estrogen therapy.58

Human clinical evidence for boron’s use in the treatment of OA patients was first provided by a doubleblind, placebo-controlled supplementation trial conducted in Australia, in which a significantly favorable response to a supplement of 6 mg of boron per day (sodium tetraborate decahydrate) was seen in 20 subjects with OA; 50% of subjects receiving supplemental boron improved compared with only 10% of those receiving the placebo.61

Clinical Effects of Hypomagnesemia

In addition to its direct effects on the structure and cells of the skeleton, magnesium impacts bone indirectly by affecting the homeostasis of the 2 master regulators of calcium homeostasis (ie, parathyroid hormone [PTH] and 1,25[OH]2D3).59 PTH signaling involves the increase of cyclic adenosine monophosphate (cAMP) through the activation of adenylate cyclase, which requires magnesium.

Hypomagnesemia impairs secretion of PTH and renders target organs refractory to PTH. Reduced secretion of PTH or impaired peripheral response to the hormone leads to low serum concentrations of 25(OH)D3. In addition, the hydroxylase enzyme 25-hydroxycholecalciferol-1-hydroxylase, which is responsible for production of the most active, hormonal form of vitamin D, calcitriol, requires magnesium as its cofactor. Consequently magnesium deficiency impairs calcitriol production.

Hypomagnesemia promotes inflammation.60 Substance P is released at high levels in magnesium deficiency, and the levels of proinflammatory cytokines—TNF-α, IL-1, and IL-6— increase both in the serum and the bone marrow. Magnesium also plays an important role in carbohydrate metabolism; its deficiency provokes and worsens insulin resistance.

Insulin resistance and resulting high glucose concentrations (>12 mM) alter the biomineralization process in osteoblastic cells so that although a number of factors promoting osteoblast activity are triggered, less calcium is deposited. High glucose increases mRNA expression of the receptor activator of nuclear factor kappa B ligand (RANKL), OCN, BSP, and RUNX2, but it decreases expression of the decoy for RANKL (ie, osteoprotegerin) and increases mRNA expression of proinflammatory cytokines (eg, IL-6, IL-10, and TNF-α). Osteoblastic cells cultured in normal glucose conditions had a Ca/P ratio of 1.48 and 1.60 at 7 days and 14 days, respectively. In contrast, mineral deposits formed by osteoblastic cells cultured with high d-(+)-glucose concentrations had Ca/P ratios of 0.78 and 1.29 at 7 days and 14 days, respectively. These findings represent just a few of the ways in which hypomagnesemia causes accelerated bone loss. Adequate boron intake of 3 mg/d can help prevent hypomagnesemia.

In vitro studies have shown anti-inflammatory effects of calcium fructoborate—a naturally occurring, plant-based, boron-carbohydrate complex—on cellular cultures,62 and an open-label pilot study (n = 20) found that calcium fructoborate had highly positive effects on OA symptoms.26 In the 8-week pilot study, OA patients were divided into 2 groups, those with mild and medium forms of OA and those with severe cases. Two assessment measures were used, the Western Ontario and McMaster Universities Arthritis Index (WOMAC) and the Newnham criteria. Mild-to-medium cases received 6 mg/d of supplemental boron; severe cases received 12 mg/d. In subjects with mild and medium OA, average pain reduction was 62.5% in 4 weeks and 70.8% in 8 weeks. In the first 4 weeks, 80% of mild-to-medium OA subjects reduced or eliminated their analgesic (ibuprofen) use. By 8 weeks, 67% had stopped using the nonsteroidal anti-inflammatory drug (NSAID) medication. Joint rigidity disappeared in one-half of the mild and medium OA patients in the first 4 weeks and decreased in the remaining one-half by 87.5% on average. By week 8, all subjects with mild- and medium-level OA were rigidity free. Mobility and flexibility were significantly improved in 71.4% of subjects at 4 weeks and in 77.8% at 8 weeks.

High-sensitivity C-reactive Protein

C-reactive protein (CRP) is an acute-phase protein produced in the liver in response to increased immune-cell production of proinflammatory cytokines (eg, IL-1, IL-6, IL-8, and TNF-α). CRP is a known predictor of risk for cardiovascular disease (CVD), heart attack, and stroke. Studies have also shown a clear link between above-normal levels of CRP and OA, periodontal disease, and risk for fracture. In Japan, where women typically have substantially lower levels of CRP than their Caucasian counterparts, women whose CRP levels were above what is normal for the Japanese had more than double the risk for fracture—2.22 if in the medium quartile and 2.40 if in the quartile with the highest CRP levels.63

Two tests can be used to evaluate CRP: CRP and hs-CRP. Both tests measure the same molecule in the blood. CRP is the standard test and measures a much wider, higher range of CRP levels than hs-CRP, but CRP does not do well in capturing the lower ranges, which are important in determining whether low-level, chronic inflammation is present and which may be a contributing factor to an ongoing disease process. The test for hs-CRP accurately detects the lower concentrations of CRP. People with chronically elevated inflammation (eg, individuals with conditions such as arthritis or periodontal disease) should have the CRP, not the hs-CRP test run. Their CRP levels will be very high, often too high to be meaningful or even measured using the hs-CRP test. The hs-CRP test is the better choice for apparently healthy people to determine whether they have low-grade chronic inflammation. The hs-CRP test measures CRP in the range from 0.5 to 10 mg/L. The standard CRP test measures CRP in the range from 10 to 1000 mg/L.

Hs-CRP usually is ordered as one of several tests in a cardiovascular risk profile, often together with tests for cholesterol and triglycerides, because the best way to predict cardiovascular risk is to combine a good marker for inflammation, such as hs-CRP, with the lipid profile. Research has now shown that healthy people whose hs-CRP results are in the high end of the normal range, above 3.0 mg/L, have 1.5 to 4 times the risk of having a heart attack compared with those whose hs-CRP values are at the low end of the normal range, 1.0 mg/L or less.

Because the hs-CRP test serves as a marker for inflammation, it is important that the patient is not recently recovering from a cold, flu, other infection, or injury when the test is run. As noted earlier, CRP is an acute-phase protein, so levels dramatically rise in response to any recent illness, infection, or trauma, including dental work. For that reason, any acute inflammation will raise the amount of CRP and give a falsely elevated estimate of risk. Also, patients should be instructed not to take an NSAID, as those medications will temporarily depress CRP levels, as will statins, giving a falsely lowered estimate of risk.

Women on conventional hormone replacement therapy (HRT) (eg, Premarin or Provera), but not on bioidentical hormone replacement therapy (BHRT), have been shown to have elevated hs-CRP levels, yet another reason to consider use of BHRT rather than HRT.

In the severe OA group, average pain reduction was 47.9% at 4 weeks and 64.5% at 8 weeks. In the first 4 weeks, 40% of subjects with severe OA reduced or eliminated their analgesic (ibuprofen) use. By week 8, 75% had quit using their NSAID medication (ibuprofen). Joint rigidity disappeared in one-half of the severe OA patients in the first 4 weeks. In the remaining one-half, joint rigidity decreased significantly, an average rigidity reduction of 50%. Mobility and flexibility were significantly improved in 50% of severe OA subjects at 4 weeks and in 62.5% at 8 weeks.

Based on the results of animal studies,62 the researchers hypothesized that boron’s anti-inflammatory effects result from inhibition of the oxidative burst by scavenging cells (leukocytes) and excessive activity by neutrophils (ie, white cells that scavenge debris) and invaders outside of the circulatory system. Boron also boosts free-radical scavenging by raising levels of a triumvirate of antioxidant enzymes in blood and cells: SOD, catalase, and glutathione peroxidase.

Scorei et al54 then conducted a double-blind, placebo-controlled pilot study to evaluate the effects of different dosages of calcium fructoborate on systemic inflammation and dyslipidemia markers in middle-aged people with primary OA. Study subjects (n = 72) were randomly assigned to 4 groups: (1) group 1 received 1.5 mg of boron, 2 ×/d; (2) group 2 was given 3 mg, 2 ×/d; (3) group 3 received 6 mg, 2 ×/d; and (4) group 4 received placebo, 2 ×/d. Fifteen days of dietary supplementation with calcium fructoborate lowered inflammatory biomarkers— CRP, fibrinogen (FBR), and erythrocyte sedimentation rate (ESR)—in all groups except the placebo group; no effect was seen on lipids. In groups 1, 2, and 3 (ie, those supplemented with boron in the form of calcium fructoborate), significant decreases occurred in ESR levels: a drop of −10.25%, −11.9%, and −8.5% in groups 1, 2, and 3, respectively, compared with baseline. In the placebo group, the ESR level rose 36.36%. FBR also dropped in those supplemented: −13.73 in group 1, −2.05 in group 2, and −4.18 in group 3. In the placebo group, FBR rose 4.10. CRP also dropped in all supplemented groups: −60.25 in group 1, −26.66 in group 2, and −17.54 in group 3. In the placebo group, CRP increased 5.47.

Most recently, calcium fructoborate 110 mg 2 ×/d, which provides approximately 3 mg of boron 2 ×/d or 6 mg/d, was shown to improve knee discomfort within the first 14 days of treatment. In this study, subjects with self-reported knee discomfort (n = 60) were randomized into 2 groups given either calcium fructoborate or placebo.64 At both 7 days and 14 days, significant reductions in the mean, within-subject changes in scores, as measured using the WOMAC index and the McGill Pain Questionnaire (MPQ), were seen in the group supplemented with calcium fructoborate when compared with the placebo group. Estimated treatment differences for the MPQ score were −5.8 and −8.9 at days 7 and 14, respectively. Estimated differences for the WOMAC score were −5.3 and −13.73 at days 7 and 14, respectively. Negative values indicate greater reductions in reported discomfort. No changes in the WOMAC or MPQ scores were seen in the placebo group.65

CRP levels are typically higher in patients with OA compared with normal controls, and CRP levels with reference values above 0.5 mg/dL in OA patients are associated with disease progression.66,67 As noted earlier, in addition to OA and CVD, higher levels of CRP are also associated with NAFLD, MetS, type 2 diabetes, obesity, depression, kidney disease, and osteoporosis. Boron, in combination with plant-sourced calcium, as calcium fructoborate, has been shown to significantly reduce blood levels of CRP in humans.68

Protection Against Malathion-induced Oxidative Stress

In a recent study, boron protected animals chronically exposed to low levels of malathion, a widely used pesticide that causes oxidative stress even at the low levels at which humans are exposed to it in the food supply.69 Malathion administration 100 mg/kg/d by gastric gavage increased malondialdehyde, nitric oxide and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, and markers of liver damage. It decreased acetylcholinesterase and reduced glutathione; superoxide dismutase; and catalase activities in blood, liver, kidney, and brain tissues. Administration of boron 5, 10, and 20 mg/kg/d reversed malathion-induced oxidative stress, lipid peroxidation, and suppression of antioxidant enzyme activity. Boron decreased malathion-induced oxidative stress, enhanced antioxidant defense mechanisms, and regenerated damaged liver, kidney, and brain tissues in rats.

Rest is here
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712861/
Seen it and like I said, I have been speaking with Dr.Reza Naghii and it is not used 20mg Boron Cittate but Borax. (10mg of active boron was an average dose in his studies).

You are still misunderstanding those doses. When it says lets say "10mg boron daily", it is active boron from a boron source and not 10mg the whole source.
He also recommended me Boron Citrate at 200mg if I could not get my hands on Borax. 200mg Boron Citrate= 10mg active boron
 
justhere4comm

justhere4comm

Banned
Awards
4
  • RockStar
  • Established
  • First Up Vote
  • Best Answer
That’s what I meant. Thanks.
 
thebigt

thebigt

Legend
Awards
6
  • Best Answer
  • The BigT Award
  • Established
  • Legend!
  • RockStar
  • First Up Vote
Always feels like they are leaving out or not telling you something ha. But same I will continue to take my vit D:)

when that many ph.d's get together for a project you have to wonder what their motivation is, and who is footing the bill...those guys don't work for free, there is definitely an agenda we are not aware of....


I take studies with a grain of salt...in a debate several guys will post opposing studies.... it seems studies are a lot like 'expert witnesses', lol.
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
when that many ph.d's get together for a project you have to wonder what their motivation is, and who is footing the bill...those guys don't work for free, there is definitely an agenda we are not aware of....


I take studies with a grain of salt...in a debate several guys will post opposing studies.... it seems studies are a lot like 'expert witnesses', lol.
Ideally eventually the studies start to form a general consensus, with the “outliers” showing conflicting results. Like we know that Creatine works well for sure. Beta alanine when used properly for the right reasons. Etc. Lots of other stuff is inconclusive though for sure.
 
thebigt

thebigt

Legend
Awards
6
  • Best Answer
  • The BigT Award
  • Established
  • Legend!
  • RockStar
  • First Up Vote
Ideally eventually the studies start to form a general consensus, with the “outliers” showing conflicting results. Like we know that Creatine works well for sure. Beta alanine when used properly for the right reasons. Etc. Lots of other stuff is inconclusive though for sure.
up until recently creatine studies concluded that creatine was useless....and daa was the next big thing...then they said carnitine was harmful....


then they said it was going to be sunny and got 10 inches of snow.:jester:
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
up until recently creatine studies concluded that creatine was useless....and daa was the next big thing...then they said carnitine was harmful....


then they said it was going to be sunny and got 10 inches of snow.:jester:
What are you talking about? Studies have said that Creatine worked for years. It was the mainstream media and doctors that claimed it didn’t work. It’s only recently that the general-health benefits of Creatine have been demonstrated in a lot of studies.

There were also never DAA studies in normal subjects, only people with low-T, so it was companies/people extrapolating data to a different population, not the studies or authors themselves coming to conclusions that would later be disproven.
 
John Smeton

John Smeton

Legend
Awards
4
  • RockStar
  • Legend!
  • Established
  • First Up Vote
There was a study done in 2004 or before . It was done in hawaii. They took fifty people and tested vit D levels, who have not taken VIT D or been in the sun, from my understanding. They went to the beach for week, got some sun. About half of their vit D levels improved. the other half did not.

This goes to show you some people's vitamin D levels did not improve from not taking Vit D supplementation, and not getting sun for a certain amount of time, after getting a some sun for a week. Some peoples Vit D levels did improve under the same conditions. I've always found this study interesting since I first came across it in 2004.


djbombsquad do you remember this study? Moreover, do you remember if this study was done from Shaklee?
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
There was a study done in 2004 or before . It was done in hawaii. They took fifty people and tested vit D levels, who have not taken VIT D or been in the sun, from my understanding. They went to the beach for week, got some sun. About half of their vit D levels improved. the other half did not.

This goes to show you some people's vitamin D levels did not improve from not taking Vit D supplementation, and not getting sun for a certain amount of time, after getting a some sun for a week. Some peoples Vit D levels did improve under the same conditions. I've always found this study interesting since I first came across it in 2004.


djbombsquad do you remember this study? Moreover, do you remember if this study was done from Shaklee?
Something similar:
https://www.ncbi.nlm.nih.gov/m/pubmed/17426097/
 
Humble

Humble

Member
Awards
1
  • Established
I’m thinking more Boron and less Vitamin D supplementation...except for continuing to run around outside naked for 20 minutes a day.
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
I’m thinking more Boron and less Vitamin D supplementation...except for continuing to run around outside naked for 20 minutes a day.
But some studies have shown that individual response to sunlight can vary. Given how cheap Vitamin D is, and that it’s generally quite safe when used in moderation, if you haven’t had testing to confirm you’re at good/optimal levels already, a little Vitamin D supplementation may not be a terrible idea IMO.
 
Humble

Humble

Member
Awards
1
  • Established
But some studies have shown that individual response to sunlight can vary. Given how cheap Vitamin D is, and that it’s generally quite safe when used in moderation, if you haven’t had testing to confirm you’re at good/optimal levels already, a little Vitamin D supplementation may not be a terrible idea IMO.
Yeah, my bloodwork in 2014 showed me deficient in Vit D so I began to supplement 2000 iu every day and try to spend 20 minutes daily in the sun.

No problems since then.

I’m cutting my Vit D down to 1000 iu this week and going forward to see what happens. I’m trying to ween my body off supps and Rx drugs in general.

Stay safe! Stay strong!
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
Yeah, my bloodwork in 2014 showed me deficient in Vit D so I began to supplement 2000 iu every day and try to spend 20 minutes daily in the sun.
No problems since then.
I’m cutting my Vit D down to 1000 iu this week and going forward to see what happens. I’m trying to ween my body off supps and Rx drugs in general.

Stay safe! Stay strong!
If you can hit good levels without supplements, that’s great, but the way I see it, Vitamin D is very affordable, will likely always be legal, and is quite safe, so I don’t really see planning to use it long-term as a “crutch” like relying on some other drugs long-term can be. Barring some form of apocalypse, I can’t see Vitamin D supplements becoming unavailable, so it’s not really a necessity to learn to get by without it IMO. And even then, if we end up in a post-apocalyptic wasteland, you’ll probably end up getting plenty of sunlight hunting for all your food. :)
 
thebigt

thebigt

Legend
Awards
6
  • Best Answer
  • The BigT Award
  • Established
  • Legend!
  • RockStar
  • First Up Vote
If you can hit good levels without supplements, that’s great, but the way I see it, Vitamin D is very affordable, will likely always be legal, and is quite safe, so I don’t really see planning to use it long-term as a “crutch” like relying on some other drugs long-term can be. Barring some form of apocalypse, I can’t see Vitamin D supplements becoming unavailable, so it’s not really a necessity to learn to get by without it IMO. And even then, if we end up in a post-apocalyptic wasteland, you’ll probably end up getting plenty of sunlight hunting for all your food. :)
I feel the same...very cheap supplement and if we revert back to 'studies' most show that men with low testosterone are prone to having low level of vit d, is there a correlation-maybe:shrug:
 
rugger48

rugger48

Well-known member
Awards
2
  • First Up Vote
  • Established
It’s probably the opposite. Low test is associated with low vitamin d. Low test is probably part of the reason for it. I don’t know that, but it would seem to make sense. Supplementing with D probably helps the symptom, but doesn’t solve the cause.
 
muscleupcrohn

muscleupcrohn

Legend
Awards
3
  • RockStar
  • Established
  • First Up Vote
It’s probably the opposite. Low test is associated with low vitamin d. Low test is probably part of the reason for it. I don’t know that, but it would seem to make sense. Supplementing with D probably helps the symptom, but doesn’t solve the cause.
Of the two, I’d think it’s more logical that getting sufficient Vitamin D would help to ideally normalize testosterone levels as opposed to Vitamin D levels being dependent on testosterone levels.
 
aaronuconn

aaronuconn

Well-known member
Awards
3
  • RockStar
  • First Up Vote
  • Established
If you can hit good levels without supplements, that’s great, but the way I see it, Vitamin D is very affordable, will likely always be legal, and is quite safe, so I don’t really see planning to use it long-term as a “crutch” like relying on some other drugs long-term can be. Barring some form of apocalypse, I can’t see Vitamin D supplements becoming unavailable, so it’s not really a necessity to learn to get by without it IMO. And even then, if we end up in a post-apocalyptic wasteland, you’ll probably end up getting plenty of sunlight hunting for all your food. :)
I’m curious if long-term, we’ll see more foods Vitamin D fortified. Not talking just 100 iu’s here and there like milk, but enough to where the average person gets ~1000 iu’s daily.
 
thebigt

thebigt

Legend
Awards
6
  • Best Answer
  • The BigT Award
  • Established
  • Legend!
  • RockStar
  • First Up Vote
Of the two, I’d think it’s more logical that getting sufficient Vitamin D would help to ideally normalize testosterone levels as opposed to Vitamin D levels being dependent on testosterone levels.
which would blow the study out of the water...just sayin
 

Similar threads


Top