A New View Of Energy Balance

  1. New Member
    ArnoldIsMyIdol's Avatar
    Join Date
    Apr 2006
    Posts
    364
    Rep Power
    286
    Level
    16
    Lv. Percent
    96.11%

    A New View Of Energy Balance


    A New View of Energy Balance

    By Dr. John M Berardi, Ph.D.
    First published at Testosterone Nation, May 11, 2005.

    Printer friendly version

    A Violent Uprising?

    Arthur Schopenhauer, a preeminent 19th century philosopher, once said that truth isn’t always as easily accepted as we’d like it to be. Specifically, he stated: "Truth always goes in 3 stages. First it is ridiculed, then violently opposed, and finally accepted as self-evident."

    Now, in this article, I intend to introduce the Testosterone Nation to a new
    "truth." Well, maybe that’s not the best way of saying it. But, since saying
    that I intend to introduce the T-Nation to my best guess at a theoretical model designed to explain and predict a natural phenomenon will leave a few of you scratching your heads, let’s stick with calling it a new truth.

    The "new truth" that I want to introduce you to today is a new view of the
    concept of energy balance. Although the ideas in this article will suggest that the current view of the energy balance equation offers limited explanatory and predictive power and, as a result, needs revisions, I don’t necessarily think that these ideas will stir uprisings, violent or otherwise.

    First of all, the concepts in this article are logical, supported by research, and have appeared in bits and pieces, albeit fragmented, elsewhere on this site in the work of myself and the Warrior Nerd, Dr Lonnie Lowery.

    Second of all, I’m just not sure the concept of energy balance has the power to rouse violence. It always makes me chuckle when "experts" (in any field) parrot this Schopenhauer quotation, suggesting that the ridicule of their ideas actually somehow makes the ideas true! Looking back through history, many more ridiculed ideas have been shown to be false than have shown to be true.

    So rather than testing the ideas in this article against the barometer of ridicule and violent upheaval, let’s just test them against a much more objective standard—the available body of scientific and clinical evidence.

    The Current View of Energy Balance

    Let’s start out with a few pictures illustrating the current view of energy
    balance, or, at least, how most people view the relationship between "calories in" and "calories out."

    The first image below represents how most people perceive the energy balance equation during weight maintenance. As the diagram represents, when "calories in" are equivalent to "calories out," body mass should remain constant.


    The next image below represents the conventional view of the energy balance equation during weight gain. As the diagram represents, when "calories in" exceed "calories out" body mass should be gained.

    The next image below represents the conventional view of the energy balance equation during weight loss. As the diagram represents, when "calories out" exceed "calories in," body mass should be lost.

    Now, in looking at these pictures it’s important to understand exactly what they represent. These pictures represent a scientific model, or in other words, a mental picture, or idealization, based on physical concepts and aesthetic notions that account for what scientists see regarding a particular phenomenon. And not only does a scientific model, as described above, explain a particular phenomenon, it allows scientists to predict a future course for the phenomenon in question.

    Therefore, if the energy balance model above (or as we understand it, based on the pictures) can consistently explain body composition changes seen in those altering their exercise and nutritional habits, as well as predict how any specific change in either variable will impact body composition in the future, it’s a valid model. If not, it’s invalid (incomplete, misunderstood, or completely wrong).

    From that perspective, let’s take a few case studies of mine and see if the
    model above holds up under the explanatory and predictive scrutiny necessary for a scientific model to be valid.

    Three Strikes and You’re Out
    In order to support my contention that the above-mentioned model of energy
    balance (or as we understand it, based on the pictures) is inadequate; here are 3 case studies for your examination.

    *Case Study #1:
    National Level Cross Country Skier; Female - 20y

    Client Information from September 2002:
    5’6" ; 160lb ; 22% fat
    (125lb lean, 35lbs fat)

    Exercise Expenditure:
    ~1200kcal/day

    Energy Intake:
    ~2500kcal/day
    15% protein
    65% carbohydrate
    20% fat

    Client Information from December 2002:
    5’6" ; 135lb ; 9% fat
    (123lb lean, 12lbs fat)

    Exercise Expenditure:
    ~1200kcal/day

    Energy Intake:
    ~4000kcal/day
    35% protein
    40% carbohydrate
    25% fat

    Net result — 12 weeks:
    25lbs lost; -23lb fat; -2lbs lean

    *Note that in case study #1, we increased energy intake by a whopping 1500 per day while energy expenditure remained the same. Since the athlete was weight stable in September—prior to hiring me—you might have expected her to have gained weight during our 12 week program. However, as you can see, she lost 25lbs (while preserving most of her muscle mass). Since the energy balance model above, as it appears, can’t explain this very interesting result, that’s one strike.

    *Case Study #2:
    Beginner Weight Lifter; Male — 23y

    Client Information from August 2003:
    5’6" ; 180lb ; 30% fat
    (126lb lean, 54lbs fat)

    Exercise Expenditure:
    ~200kcal/day

    Energy Intake:
    ~1700kcal/day
    21% protein
    57% carbohydrate
    22% fat

    Client Information from October 2003:
    5’6" ; 173lb ; 20% body fat
    (138.5lb lean, 34.5lbs fat)

    Exercise Expenditure:
    ~600kcal/day

    Energy Intake:
    ~2200 - 2400kcal/day
    35 - 40% protein
    30 - 35% carbohydrate
    30 - 35% fat

    Net result — 8 weeks:
    7lb weight loss; -19.5lb fat, +12.5lb lean

    *Notice that in case study #2, we increased energy intake by between 500 and 700 per day while increasing energy expenditure by about 400 per day. Again, since the lifter was weight stable in June, prior to hiring me, you might have expected him to have gained weight or at least remained weight stable during this 8 week program. However, as you can see, he lost 7 lbs. But that’s not the most interesting story. During the 8 weeks, he lost almost 20lbs of fat while gaining almost 13 lbs of lean mass. Since the energy balance model above, as it appears, can’t explain this very interesting result, that’s two strikes.

    *Case Study #3:
    Mixed Martial Arts Trainer; Male — 35y

    Client Information from June 2004:
    5’10" ; 179lb ; 19% fat
    (148.6lb lean, 30.4lbs fat)

    Exercise Expenditure:
    ~300kcal/day

    Energy Intake:
    ~1100 - 1500kcal/day
    48% protein
    25% carbohydrate
    27% fat

    Client Information from August 2004:
    5’10" ; 187lb ; 9% body fat
    (170.2lb lean, 16.8lbs fat)

    Exercise Expenditure:
    ~600kcal/day

    Energy Intake:
    ~2400 - 2600kcal/day
    26 - 38% protein
    28 — 42% carbohydrate
    22 — 34% fat

    Net results — 8 weeks:
    8lb weight gain; -13.6 lb fat, +21.6 lb

    *Notice that in case study #3, we increased energy intake by between 1100 and 1300 per day while increasing energy expenditure by only about 300 per day. Again, since the lifter was weight stable in June, prior to hiring me, you might have expected him to have experienced a large gain in mass, both significant muscle and fat gains. However, as you can see, he gained 8 total lbs, having lost almost 14lbs of fat while gaining nearly 22lbs of lean mass.
    While the energy balance equation might have predicted weight gain, it’s
    unlikely that it would have predicted the radical shift in body composition seen in this individual. Yet another strike against the current view of energy
    balance, as it appears.

    Simplicity and Energy Balance

    After looking at the case studies above, you might be wondering where the
    classic view went wrong. (You also might be wondering what these individuals were on in order to progress so quickly—well, actually, not one of them took steroids or any nutritional supplements more powerful than Low-Carb Grow! Surge, and fish oil).

    Although scientists are still trying to work out what types of metabolic
    "uncoupling" are going on in order to produce results like those results above, it’s my belief that the current view of energy balance (depicted in the slides above) is just too simple to offer consistent explanatory and predictive power in the realm of body composition change. Below are the three main reasons I believe this to be true:

    1. Calorie restriction or overfeeding (in the absence of other metabolic
    intervention like drugs, supplements, or intense exercise) is likely to
    produce equal losses is lean body mass and fat mass (w/restriction) or equal gains in lean body mass and fat mass (w/overfeeding). And even if these gains or losses aren’t necessarily equal, they still are in such a proportion that while body mass may be affected, individuals will only likely end up smaller or larger versions of the same shape. I call this the "body shape status quo".(1)

    2. Most people assume too much simplicity by associating energy intake with calorie intake alone, and energy expenditure with exercise activity alone. This simplistic view can lead to false assumptions about what causes weight gain and weight loss.(2) Both sides of the equation are much more complex and it’s these interrelationships that are important to physique mastery.

    3. Most people treat the energy intake and energy expenditure sides of the
    equation as independent. As a result, even if we could avoid reason #2 (the
    problem of simplicity) by matching energy intake against all the known forms of work that the body does in utilizing energy,

    "…Obesity can arise in the absence of calorie over consumption. In addition, opposite models can show how obesity can be prevented by increasing expenditure to waste energy and stabilize body weight when challenged by hyperphagia (over consumption)". (3)

    Factors Affecting Energy Balance

    Now, when I say that most people assume too much simplicity by associating energy intake with calorie intake alone, and energy expenditure with exercise activity alone, I’m not shaking my finger at them. Obviously, of the factors playing into energy balance, these are the most readily modifiable. But, assuming they are the only factors playing into energy balance is what gets people into trouble.

    In the diagram below, I’ve outlined all the factors that we currently know to
    impact both the energy intake and energy expenditure sides of the energy balance equation.


    Notice one thing, though. I don’t mention hormones here. The reason: hormones don’t impact energy expenditure directly. Rather, they signal a change in one of the factors listed on the energy expenditure side of the equation (or they lead to an increased appetite, thus are two steps removed from affecting the energy intake side of the equation).

    Obviously, this relationship is much more complex than most people make it out to be. Sure, on the energy intake side of the equation, things are fairly
    simple. The "calories in" are mostly affected by the efficiency of digestion
    (90-95% of energy in). And we can control this side by volitionally choosing how much we stuff in our mouths.

    However, on the energy expenditure side, we’ve got three major "destinations" for our ingested energy; work, heat and storage. And all the energy coming in goes to one of those three destinations. From this perspective, although it seems a bit counterintuitive, we’re actually always in "energy balance" regardless of whether we’re gaining or losing weight. The energy taken in is always balanced by the energy going toward work, heat and storage.

    The interesting part is that during periods of over- or under feeding, the
    amount of energy in can influence most of the factors on the energy out side.

    Relationships Between Energy In and Energy Out

    In order to add another touch of complexity to the discussion, as discussed
    above, most people treat the two sides of the energy balance equation as
    independent. They’re not. But don’t just take my word for it:

    "The regulatory systems (of the body) control both energy input and output so that for a given steady state, compensatory changes on the input side are made if expenditure is challenged, or on the output side (expenditure or efficiency) if intake is challenged…Realizing human obesity is caused by the interaction of an obesigenic environment with a large number of susceptibility genes, successful treatment will require uncoupling of these compensatory mechanisms" (4).

    "The critical issue in addressing the problem of alterations in body weight
    regulation is not intake or expenditure taken separately, but the adjustment of one to the other under ad libitum food intake conditions" (5).

    In the end, as these scientists suggest, understanding the relationship between "energy in" and "energy out" requires a more complex energy balance model than the one most people currently picture in their minds.

    And, as promised above, here’s my take on what this model should look like in order to more accurately reflect what’s going on with energy balance.

    Dr. JB’s Energy Balance Model

    Let’s walk through this model together.


    First, energy is ingested, with 90-95% of it being digested and absorbed. Once this energy reaches the cells, the intake is "sensed" by the body and signals are sent to the brain (and other tissues) to manipulate energy expenditure.

    Here’s one way that energy intake is "sensed." (For a more detailed explanation, check out check out Part 1 of my "Hungry Hungry Hormone" article series.)


    Based on the signals received, the brain either sends signals back to the body in order to increase hunger and metabolic efficiency while decreasing metabolism (if in a hypocaloric state), or in order to decrease hunger and metabolic efficiency while increasing metabolism (if in a hypercaloric state).

    A complete understanding of this model leads us to realize that trying to
    manipulate total energy intake alone in order to alter body composition lets us down because the energy expenditure side of the equation quickly changes to accommodate intake conditions. And trying to manipulate the energy expenditure side of the equation in order to alter body composition lets us down because the energy intake side of the equation is signaled to change in order to match expenditure conditions. In the end, this entire system is in place to prevent significant deviations from a comfortable body composition homeostasis. However, we all know that body mass and body composition can be altered reliably and homeostasis can be overcome to one degree or another. So, how do we manage to "outsmart" the body?

    Well, various strategies can help to "uncouple" the relationships between energy intake and expenditure. I’ve detailed a few of them below.

    Energy Uncoupling

    Notice that there are two possible "uncoupling points" in this energy balance model.

    The first uncoupling point lies in the communication between energy sensing/brain signaling (the lower arrow) and the second lies in the communication between the brain and the body—particularly in the drive to eat and the drive to move (the upper arrow).

    Think of what dieters face during those inevitable dieting stalemates that
    nearly all of us have experienced. Once energy is restricted, appetite is
    reduced and both exercise and non-exercise energy expenditure is reduced. In order to combat this inevitable metabolic slow-down, a few of the strategies illustrated above can be beneficial.

    First, on the energy sensing/signaling end, periodic re-feeding, the use of
    carbohydrate or carbohydrate/protein drinks during exercise, and upregulation of thyroid function by nutritional supplements designed to provide raw materials for thyroid hormone manufacture or to stimulate the conversion of T4 to the more active T3 in the body can help keep the metabolic signal alive.

    Secondly, on the brain to body end (the drives to eat and move), although
    signals are sent to increase food intake and decrease voluntary activity, these can be uncoupled by refusing to eat more in the face of increased hunger.

    Also, uncoupling can occur as a result of performing more exercise and non-exercise activity (including using strategies for increasing the cost of each activity — wearing an X-vest when walking, for example) in an attempt to maintain pre-diet energy expenditure.

    If you’re looking for more tips for uncoupling the tight relationship between
    energy intake and energy expenditure, check out Dr Lonnie Lowery’s Losing Your Energy Balance series at Testosterone Nation

    In addition, as most of you know, I believe that alterations in food type (what
    you eat) and food timing (when you eat) can also uncouple this relationship and improve both weight loss profile and muscle building profile.

    For more on this, check out my" Lean Eatin’" articles — Part 1 and 2 — as well asmy Appetite for Construction column right here at JB.com.

    And if after reading these articles, you still don’t buy into the calore is not a calorie argument (which is closely related to the concepts presented in this article), check out this recent scientific paper by Buchholz and Schoeller (6).

    Finally, check out my review of my presentation at the 2004 SWIS Symposium for a more complete treatment of how to use the information presented in this article to impact fat loss.

    In the end, I hope it’s evident that the traditional picture of energy balance
    is missing one key facet—the fact that energy intake and expenditure are tightly inter-related. Without understanding this relationship, some erroneous conclusions are regularly drawn by dieters and nutritionists, conclusions that prevent the types of success seen in the case studies discussed in this article.

    Now that you’re armed with this information, you’ll be better equipped to
    construct nutrition schedules designed to "outsmart" the body, uncoupling this relationship above, and losing fat (or gaining muscle) while others stagnate.

    References:
    1. Forbes, GB. Ann N Y Acad Sci. 2000 May; 904:359-65.
    2. Prentice, A, Jebb, S. Nutr Rev. 2004 Jul;62(7 Pt 2):S98-104.
    3. Rampone, AJ, Reynolds, PJ. Life Sci. 1988;43(2):93-110.
    4. Berthoud, HR. Neurosci Biobehav Rev. 2002 Jun;26(4):393-428.
    5. Jequier, E. Ann N Y Acad Sci. 2002 Jun;967:379-88.
    6. Buchholz AC, Schoeller DA. Am J Clin Nutr. 2004 May; 79(5):899S-906S.

  2. Registered User
    kwyckemynd00's Avatar
    Stats
    5'10"   lbs.
    Join Date
    Jun 2004
    Age
    31
    Posts
    5,324
    Rep Power
    2847
    Level
    52
    Lv. Percent
    88.65%
    Achievements Activity ProPosting ProPosting Authority

    JB always has interesting stuff, but what he was explaining there seems like stuff we already have known for a while (Just not discussed in such detail.)
  3. Board Supporter
    Nitrox's Avatar
    Join Date
    Jan 2004
    Age
    42
    Posts
    1,303
    Rep Power
    802
    Level
    27
    Lv. Percent
    11.18%
    Achievements Posting Pro

    Quote Originally Posted by kwyckemynd00
    JB always has interesting stuff, but what he was explaining there seems like stuff we already have known for a while (Just not discussed in such detail.)
    I have to agree with you there; there is nothing new here. Restrict calories too much and your BMR will tank and it will be difficult to achieve an energy deficit without causing your body to burn up muscle in short order. Look at the original caloric intakes of his three case studies...

    Personally I think Berardi is a hack who, instead of calling the glass half empty, labels it half full and then claims ownership over a new theory. Of course any oversimplified model is going to be inadequate at some point and calories in - calories out is about as simple as it gets. However it serves it purpose. Presenting 800 pages worth of info from a nutritional reference text that details the big picture to a layman will likely be a lost cause.
    •   
       

  4. Senior Member
    Scottyo's Avatar
    Join Date
    Feb 2003
    Posts
    1,001
    Rep Power
    643
    Level
    24
    Lv. Percent
    60.15%
    Achievements Posting Pro

    I agree with the hack assessment. If you want a good to actually get some science rather than pseudo-science mixed with pseudo-philosophy (hey, lets throw in a quote from a somewhat ignored philosopher....and I actually like some of Schopenhauer, but why the hell is that even in here?), look at the Dynamical systems thread over on avant. Or bring people like Vain, Spook, or kellyb or trouble over to start explainin a few things.
  5. Registered User
    kwyckemynd00's Avatar
    Stats
    5'10"   lbs.
    Join Date
    Jun 2004
    Age
    31
    Posts
    5,324
    Rep Power
    2847
    Level
    52
    Lv. Percent
    88.65%
    Achievements Activity ProPosting ProPosting Authority

    I'd say sellout moreso than hack. He's an educated man, and he's also trying to sell himself
  6. Registered User
    lilkev42's Avatar
    Join Date
    May 2006
    Age
    27
    Posts
    398
    Rep Power
    302
    Level
    16
    Lv. Percent
    34.74%

    Very interesting post, I always wonder if "metabolism" is that simple(i.e. calories in vs out). I have questioned it, but my question is with case study #3. What I am thinking is he was taking in too little calories, so wouldn't his body be storing the food as storage because of so little nutrients?? I may be wrong, I honestly don't know, but that was just my question. I do liek how you brought up this topic though, great thread.
  7. Senior Member
    Scottyo's Avatar
    Join Date
    Feb 2003
    Posts
    1,001
    Rep Power
    643
    Level
    24
    Lv. Percent
    60.15%
    Achievements Posting Pro

    These "case studies" are simply three personal training clients, or three anecdotal stories. Human physiology is so variable that unless you are simply testing for one thing, his "scientific methods" are meaningless.
    Ok....let see our independent variable will be calories in (wait, but we have to decide what calories), and the dependent variable is muscle/fat change.
    But we forgot that the person "studied" is a mixed martial artist, and not a bodybuilder/weightlifter.

    My guess is that number 3 did not regularly weight train, thereby his "gains" were simply a result of lifting up a weight correctly and the associated newbie gains. I know several mixed martial artists who have **** gym etiquette, form, or consistency.
    I dont mean to be overly critical of Berardi, but what does his little "study" actually show? it suggests a number of things we already believe, and it proves or confirms none of these.
  8. Board Supporter
    xtraflossy's Avatar
    Join Date
    Dec 2005
    Age
    34
    Posts
    1,930
    Rep Power
    12329
    Level
    33
    Lv. Percent
    21.3%
    Achievements Activity ProPosting Pro

    It seems strange to me, that the "Adaptation process" was not really mentioned. As you would get bigger, your body would be tring to hold more food, to support growth or to maintain the normal levels of glycogen storrage that now have a larger area to fill. Cals in/Cals out, doesnt include the "storrage tank"; your body, or the energy used to adapt the muscle for repair and then growth.

    semi- interesting read though.
  

  
 

Similar Forum Threads

  1. Need suggestions for a new name of the forum
    By Chemo in forum General Chat
    Replies: 43
    Last Post: 12-11-2008, 04:04 PM
  2. New Footage of Saddam
    By bigpetefox in forum General Chat
    Replies: 2
    Last Post: 03-23-2003, 07:41 PM
  3. Ahnold's The New Encyclopedia Of Modern Bodybuilding
    By JohnGafnea in forum Exercise Science
    Replies: 10
    Last Post: 03-15-2003, 08:23 PM
  4. new cycle of 1 & 4
    By Zen_69 in forum Anabolics
    Replies: 5
    Last Post: 03-03-2003, 11:40 PM
  5. New Faces of Whey Protein
    By YellowJacket in forum Supplements
    Replies: 4
    Last Post: 02-16-2003, 04:43 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Log in
Log in