Indigo Biosciences, Inc 1981 Pine Hall Road State College, PA 16801 T:(814) 234-1919 F:(814) 272-0152 www.indigobiosciences.com

FINAL REPORT # R081202

Evaluation of USP Test Compounds 1 & 2 for Antagonist Activity against the Human Glucocorticoid Receptor (GR)

AUTHOR

Bruce A. Sherf, Ph.D. Chief Technology Officer, Indigo Biosciences, Inc

STUDY REPORT COMPLETED ON

December 2, 2008

PERFORMING LABORATORY

Indigo Biosciences, Inc 1981 Pine Hall Road, State College, PA 16801, USA

LABORATORY PROJECT IDENTIFICATION

Invoices 081114-2

SPONSOR

USP Labs, LLC; Attn. Cy Willson 3941 Waterford Way Denton, TX, 76210

Table of Contents

Table of Contents	2
Signature Page	3
Statement of Quality Assurance	4
SUMMARY OF FINDINGS	5
1. INTRODUCTION AND STUDY DESIGN	
1.1 Aim of Study	
1.2 Selection of Doses	
2. MATERIAL AND METHODS 2.1 Test Substances	7
2.2 Assays Performed	
2.3 Experimental Proceedures 3. RESULTS AND ASSESSMENT OF FINDINGS 3.1 HUMAN GLUCOCORTICOID RECEPTOR (GR) ASSAYS 3.1.1 GR Validation Assay: Dexamthasone Dose-Response	
3.1.5 Appendix: Primary Luminometry Data, GR Antagonism Assays	10
4. REFERENCES	19

Signature Page

Study Director (signature on file)

CTO Bruce A. Sherf, Ph.D.

Laboratory Personnel (signature on file)

Ewa Maddox

Management (signature on file)

CSO John P.Vanden Heuvel, Ph.D

Date Last Revised: 12/02/2008

Statement of Quality Assurance

The Indigo Biosciences, Inc. officials listed above have inspected the study and reported any quality issues to the Client.

This final report reflects Indigo Biosciences' interpretation of the primary data generated during this study.

Phase of study Date of inspection Reported to Study Director

and to Client

Study Plan: Quote

Conduct of Study 11/17/08 – 11/21/08

Report 12/02/08

Approved (signature on file)

Date 10/22/08 Dr. John P. Vanden Heuvel

SUMMARY OF FINDINGS

The data presented herein support the following overview of this study's findings.

		Test Compounds, USP Labs Study		
		Compound 1 (Tar)	Compound 2 (Tea)	
Human	Agonist Activity	not tested	not tested	
Glucocorticoid Receptor (GR)	Antagonist Activity	None	None	
section 3.1	Observed Cyto-toxicity	None	None	

1. INTRODUCTION

1.1 AIM OF STUDY

The aim of this study was to evaluate two test compounds for possible antagonist activity to human Glucocorticoid Receptor. Test compounds were supplied by the study sponsor, USP Labs, LLC.

1.2 SELECTION OF DOSES

The Sponsor selected a six point dilution series of each test compound for evaluation, as described in Section 2.1.

1.3 RETENTION OF RECORDS

Unless otherwise requested, Indigo Biosciences will retain electronic versions of all quotes, reports to, and communications with, the study sponsor. All client information and study data is confidential, and will at no time be released to a third party without prior written consent from the client.

2. MATERIAL AND METHODS

2.1 TEST SUBSTANCES

USP Labs provided Indigo Biosciences with two test compounds for evaluation:

<u>USP Test Compound 1</u> was provided as a solid mass, and had the appearance of hardened tar. This compound is henceforth designated "Compound 1 (Tar)", or "Cmpd1 (Tar)". Compound 1 (Tar) was added to 95% methanol at a concentration equivalent to 1 gram (Gm) per 100 ml. This preparation was allowed to swirl overnight, at room temperature, in a tightly capped & foil-wrapped glass bottle. The sponsor advised us that the maximum solubility of cmpd 1 (Tar) is 89.07%. Immediately prior to assay, the solution was clarified *via* filtration. Based on the provided solubility information, the neat filtrate contained 890.7 μGm of compound 1 (Tar) per ml of solution. Serial dilutions were prepared using cell culture treatment media, as follows: 1/100 > 1/200 > 1/400 > 1/800 > 1/1600 > 1/3200. 500 μl of these treatment media dilutions were added to respective assay wells. Each dilution of test Compound 1 (Tar) was assayed in quadruplicate.

<u>USP Test Compound 2</u> was provided as a finely flaked material, and had the appearance of crushed tea leaves. This compound is henceforth designated "Compound 2 (Tea)", or "Cmpd 2 (Tea)". Compound 2 (Tea) was added to 95% methanol at a concentration equivalent to 1 gram (Gm) per 100 ml. This preparation was allowed to swirl overnight, at room temperature, in a tightly capped & foil-wrapped glass bottle. The sponsor advised us that the maximum solubility of cmpd 1 (Tar) is 89.02%. Immediately prior to assay, the solution was clarified via filtration. Based on the provided solubility information, the neat filtrate contained 890.2 μGm of compound 2 (Tea) per ml of solution. Serial dilutions were prepared using cell culture treatment media, as follows: 1/100 > 1/200 > 1/400 > 1/800 > 1/1600 > 1/3200. 500 μl of treatment media dilutions were added to respective assay wells. Each dilution of test Compound 1 (Tea) was assayed in quadruplicate.

In addition to evaluating the two test compounds, a dose-response assay was performed using the known GR agonist dexamethasone ("Dex"). Dexamethasone was initially prepared as a 10 mM stock in DMSO. Treatment doses were prepared *via* serial dilution using cell culture treatment media to obtain the following picoMolar (pM; 10^{-12} Molar) concentrations: 7.81, 15.6, 31.3, 62.5, 125, 250, 500 and 1000 pM. The "0 Dex" (i.e., media only) was performed using 8 assay replicates. The "0" control value was used to calculate the ratio of signal-to-noise for all assays. The "250 pM Dex" value corresponds to the level of GR activity expressed in the *absence* of added antagonist; therefore, it is the value to which all determined values for each test compound are compared in the antagonist assays.

Page 7 of 19

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

2.2 ASSAYS PERFORMED

Three different variations of GR assays were performed in this study:

- a. A "positive-control" Dexamethasone agonist dose-response assay was performed to validate the functionality and responsiveness of the GR reporter cells used at the specific time of this study.
- **b.** A solution of Compound 1 (Tar) was prepared as previously described and used in a limiting dilution assay to assess potential GR antagonist activity of this test material.
- c. A solution of Compound 2 (Tea) was prepared as previously described and used in a limiting dilution assay to assess potential GR antagonist activity of this test material.

2.3 EXPERIMENTAL PROCEDURES

These assays were conducted using reporter cells specific to the human GR nuclear receptor, the composition and preparation of which are proprietary to Indigo Biosciences. In general these assays employ a mammalian host cell expressing GR-responsive firefly (FF) luciferase as the experimental reporter gene, and sea pansy (Renilla) luciferase as an internalcontrol reporter gene. The expression of *Renilla* luciferase provides a quantitative measure of adverse cytological effects that may arise from exposure to the test compounds, and provides a convenient means of normalizing sets of experimental data within independent GR assays. Luminescence intensities from respective firefly and *Renilla* luciferase reactions are quantified using a plate-reading luminometer, and are reported in subjective terms of Relative Light Units (RLU).

All graphical representations of GR functional activities are presented as normalized reporter data, calculated by dividing FF luciferase RLU values by Renilla luciferase RLU values. Primary Luminometry data corresponding to the independent FF luciferase and Renilla luciferase measurements are provided in the Appendix, Section 3.1.5.

3. ASSAY RESULTS & ASSESSMENT OF FINDINGS

Averaged and Normalized (FF luc/Renilla luc) RLU values, as well as respective Standard Deviations (StDev), percent Coefficients of Variation (%CV), "Ratio to Media" and "- Fold Reduction" relative to the control treatment, were calculated for USP Test Compounds #1 (Tar) and #2 (Tea), and dexamethasone positive-control agonist. These calculations were performed using Microsoft Excel software

Non-linear curve-fitting of transformed reporter data, and EC₅₀ calculations were performed. Additionally, normalized RLU values for each individual measurement within a set of minimally four replicates were analyzed by 1-way ANOVA followed by Dunnett's post-test to determine statistical significance, if any, of differences observed between test compound(s) and the control values. These analyses and graphing manipulations were performed using GraphPad Prism, v.5.0.

Figures embedded in each section provide graphical representations of normalized average RLU values, and their respective standard deviation values, for each treatment dose.

Page 8 of 19

Indigo Biosciences, Inc. R081202

Written by: BA Sherf, Ph.D., CTO Date Last Revised: 12/02/2008 Approved by: J. Vanden Heuvel, Ph.D., CSO

3.1 GLUCOCORTICOID RECEPTOR (GR) ANTAGONIST ASSAYS

3.1.1 GR Validation Assay: Dexamethasone Dose-Response

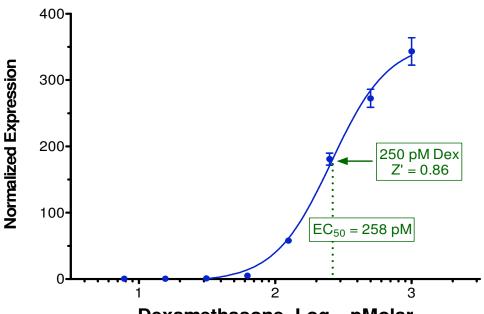

Dexamethasone (Dex), a potent agonist of GR, was used to validate the functionality of the GR reporter cells used in this study. Averaged then normalized RLU values were calculated from the primary Firefly and Renilla luciferase data, as were values for %CV and "Ratio to Media" (Table 3.1.2A). Normalized RLU values were curve-fit against Log₁₀transformed picoMolar concentrations of dexamethasone. For the reporter cells used in this assay group, the EC₅₀ value for dexamethasone was determined to be 258 pM (Figure 3.1.2A).

Table 3.1.1A

	GR Assay, Normalized (Fire fly / Renilla Luciferase) Dexamethasone Dose-Response								Ratio to		
[Dex] pM	#1	#2	#3	#4	Norm Ave	StDev	%CV	Z'	— Media Control		
0.000	0.480	0.457	0.448	0.529	0.569	0.109	19.2		1.00		
0.000	0.559	0.687	0.706	0.687	0.307	0.109	17.2		1.00		
7.81	0.606	0.591	0.720	0.659	0.644	0.0584	9.07		1.13		
15.6	0.596	0.682	0.641	0.724	0.661	0.0551	8.34		1.16		
31.3	1.067	0.990	0.911	0.881	0.962	0.0836	8.68		1.69		
62.5	4.85	5.14	5.32	5.17	5.12	0.198	3.86	0.798	9.00		
125	55.3	60.8	55.2	60.8	58.0	3.17	5.47	0.829	102		
200	128	138	138	132	132	6.46	4.89	0.850	232		
200	131	136	133	119	132	0.40	4.07	0.030	232		
250	173	184	176	191	181	8.25	4.56	0.861	318		
500	270	255	278	287	272	13.8	5.05	0.847	479		
1000	323	348	333	369	343	19.8	5.78	0.825	603		

Written by: BA Sherf, Ph.D., CTO Date Last Revised: 12/02/2008 Approved by: J. Vanden Heuvel, Ph.D., CSO

Figure 3.1.2A GR Validation Assay Dexamethasone Dose-Response (Normalized Data)

Dexamethasone, Log_{10} pMolar

Best-fit values					
Bottom	-3.884				
Тор	357.6				
LogEC50	2.412				
HillSlope	2.08				
EC50	258.3				
Span	361.5				

Std. Error						
Bottom	6.127					
Тор	17.35					
LogEC50	0.032					
HillSlope	0.271					
Span	20.06					

95% Confidence Intervals					
Bottom	-20.89 to 13.12				
Тор	309.4 to 405.8				
LogEC50	2.322 to 2.502				
HillSlope	1.329 to 2.831				
EC50	210.0 to 317.7				
Span	305.8 to 417.2				

Go	oodne	ss of Fit	
F	2	0.997	

Page 10 of 19

3.1.2 USP Test Compound #1 (Tar): GR Antagonist Assay

Treatment media were prepared to contain six concentrations of USP Test Compound #1 (Tar) AND the agonist dexamethasone at a concentration of 250 pM. Each treatment media was applied to four wells of an assay plate containing adherent GR reporter cells. Plates were processed as described above.

Averaged and Normalized RLU values were calculated from the primary Firefly and *Renilla* luciferase antagonist assay data, as were values for %CV, "Ratio to Media", and "Fold Reduction" for each concentration of test compound #1 (Tar), (**Table 3.1.2A**).

Normalized RLU values are depicted in Figure 3.1.2A.

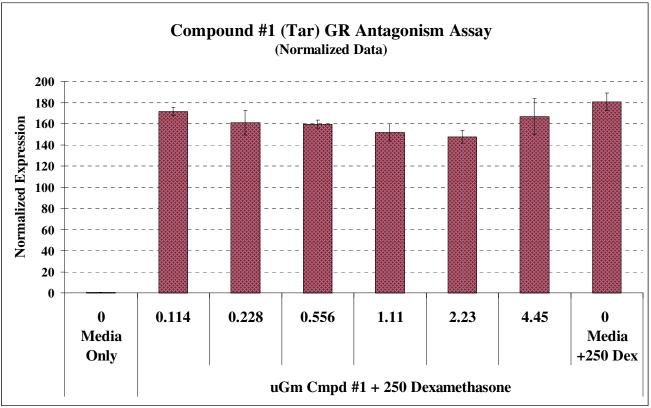

Analysis of Variance (ANOVA) and Dunnett's multiple comparison post-test were performed to determine statistical significance, if any, between the "250 pM Dexamethasone" control value and the value for respective concentrations of test compound #1 (Tar), (**Table 3.1.2B**).

Table 3.1.2A

	Normalized Data (FF / Renilla Luc): 250 pM Dex + Test Cmpd #1 (Tar) ~ GR Antagonism Assay ~									Ratio to Media	- Fold Reduction
	Dilution	μGm per 500 ul	#1	#2	#3	#4	Ave	Std Dev	%CV	Control	from Dex Control
Media	Media	0	0.480	0.457	0.448	0.529	0.569	0.109	19.2	1.00	na
Control	Only	U	0.559	0.687	0.706	0.687	0.309	0.109	19.2	1.00	nu
	1/3200	0.114	175	167	174	171	172	3.87	2.25	302	1.05
Madia	1/1600	0.228	150	157	177	159	161	11.5	7.13	283	1.12
Media + 250 Dex	1/800	0.556	156	161	164	156	159	3.86	2.42	280	1.14
+ 250 Dex + Cmpd 1	1/400	1.11	148	144	153	163	152	8.14	5.37	267	1.19
+ Cliipu 1	1/200	2.23	141	151	144	155	148	6.09	4.13	260	1.23
	1/100	4.45	188	161	148	170	167	16.9	10.2	293	1.08
	Neat 89.07%	445									
250 pM Dex Control	Media + Dex	0	173	184	176	191	181	8.25	4.56	318	1.00

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

Figure 3.1.2A

Table 3.1.2B

	One-way Analysis of Variance: GR Antagoni	ism Assay Data, USP Compound #1 (Tar)
_	P value	< 0.0001
	P value summary	***
	Are means signif. different? (P < 0.05)	Yes
	Number of groups	8
	F	360
	R squared	0.989

Dunnett's Multiple Comparison Test: GR Antagonism Assay Data, USP Compound #1 (Tar)								
<u>Comparison</u>	Mean Diff.	g	P < 0.05?	Significant?	95% CI of diff			
250 pM Dex vs 0.114 uGm #1 + Dex	9.25	1.61	No	ns	-6.77 to 25.3			
250 pM Dex vs 0.228 uGm #1 + Dex	20.3	3.52	Yes	**	4.23 to 36.3			
250 pM Dex vs 0.556 uGm #1 + Dex	21.8	3.78	Yes	**	5.73 to 37.8			
250 pM Dex vs 1.11 uGm #1 + Dex	29	5.04	Yes	***	13.0 to 45.0			
250 pM Dex vs 2.23 uGm #1 + Dex	33.3	5.78	Yes	***	17.2 to 49.3			
250 pM Dex vs 4.45 uGm #1 + Dex	14.3	2.48	No	ns	-1.77 to 30.3			
250 pM Dex vs Media (No Dex)	180	36.2	Yes	***	167 to 194			

Date Last Revised: 12/02/2008

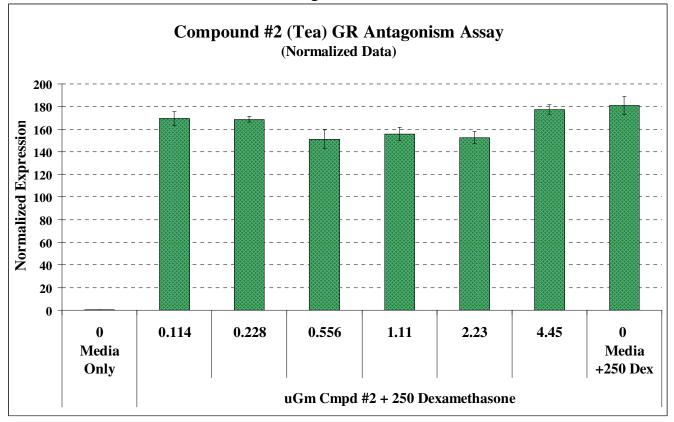
3.1.3 USP Test Compound #2 (Tea): GR Antagonist Assay

Treatment media were prepared to contain six concentrations of USP Test Compound #2 (Tea) AND the agonist dexamethasone at a concentration of 250 pM. Each treatment media was applied to four wells of an assay plate containing adherent GR reporter cells. Plates were processed as described above.

Averaged and Normalized RLU values were calculated from the primary Firefly and *Renilla* luciferase antagonist assay data, as were values for %CV, "Ratio to Media", and "Fold Reduction" for each concentration of test compound #2, (**Table 3.1.3A**).

Normalized RLU values are depicted in Figure 3.1.3A.

Analysis of Variance (ANOVA) and Dunnett's multiple comparison post-test were performed to determine statistical significance, if any, between the "250 pM Dexamethasone" control value and the value for respective concentrations of test compound #2 (Tea), (**Table 3.1.3B**).


Table 3.1.3A

	Normalized Data (FF / Renilla Luc): 250 pM Dex + Test Cmpd #2 (Tea) ~ GR Antagonism Assay ~										- Fold Reduction
	Dilution	μGm per 500 ul	#1	#2	#3	#4	Ave	Std Dev	%CV	Media Control	from Dex Control
Media	Media	0	0.480	0.457	0.448	0.529	0.569	0.109	19.2	1.00	
Control	Only	U	0.559	0.687	0.706	0.687	0.509	0.109	19.2	1.00	na
	•			•			•	•			•
	1/3200	0.114	166	166	179	168	169	6.23	3.68	298	1.07
M - 3! -	1/1600	0.228	165	170	171	168	169	2.53	1.50	297	1.07
Media + 250 Dex	1/800	0.556	161	141	152	150	151	8.24	5.46	265	1.20
+ 250 Dex + Cmpd 2	1/400	1.11	150	162	152	159	156	5.78	3.71	274	1.16
+ Chipu 2	1/200	2.23	150	151	149	160	152	5.35	3.51	268	1.19
	1/100	4.45	182	172	176	180	177	4.23	2.38	312	1.02
	Neat 89.02%	445									
250 pM Dex Control	Media + Dex	0	173	184	176	191	181	8.25	4.56	318	1.00

Indigo Biosciences, Inc. R081202

R081202 Written by: BA Sherf, Ph.D., CTO
Date Last Revised : 12/02/2008 Approved by: J. Vanden Heuvel, Ph.D., CSO

Figure 3.1.3A

Table 3.1.3B

One-way Analysis of Variance: GR Antagoni	sm Assay Data, USP Compound #2 (Tea)
P value	< 0.0001
P value summary	***
Are means signif. different? (P < 0.05)	Yes
Number of groups	8
F	893
R squared	0.996

Dunnett's Multiple Comparison Test: GR Antagonism Assay Data, USP Compound #2 (Tea)										
<u>Comparison</u>	Mean Diff.	q	P < 0.05?	Significant?	95% CI of diff					
250 pM Dex vs 0.114 uGm #2 + Dex	11.3	3.03	Yes	*	0.914 to 21.6					
250 pM Dex vs 0.228 uGm #2 + Dex	12.5	3.37	Yes	*	2.16 to 22.8					
250 pM Dex vs 0.556 uGm #2 + Dex	30.0	8.09	Yes	***	19.7 to 40.3					
250 pM Dex vs 1.11 uGm #2 + Dex	25.3	6.81	Yes	***	14.9 to 35.6					
250 pM Dex vs 2.23 uGm #2 + Dex	28.5	7.68	Yes	***	18.2 to 38.8					
250 pM Dex vs 4.45 uGm #2 + Dex	3.50	0.944	No	ns	-6.84 to 13.8					
250 pM Dex vs Media (No Dex)	180	56.2	Yes	***	171 to 189					

Page 14 of 19

Indigo Biosciences, Inc. R081202

Date Last Revised: 12/02/2008

3.1.4 GR Antagonism Assays: Conclusions & Discussion

The GR agonist reporter assay, as determined from analysis of the dexamethasone dose-response control assay, performed very well during the course of this study. The "Ratio to Media" values for the "internal control" *Renilla* luciferase reactions (Table 3.1.6B, below) show no consistent pattern of change with increasing dexamethasone concentration, hence, treatments of Dex and/or 250 pM Dex + Test Cmpd did not adversely impact reporter cell health. Further, the determined EC_{50} of 258 pM, as well as the dexamethasone "Ratio to Media" values of the "reporter" Firefly luciferase reactions are closely similar to historical values for this assay. The low %CV and high Z' values attest to the high precision of replicate measurements, and overall robust performance of these GR assays.

The data contained herein support the following conclusions:

- 1. Table 3.1.2B presents ANOVA and Dunnetts post-test statistical analyses of data presented in Figure 3.1.2A. This analyses confirms that many, but not all, of the reductions in GR activity observed between the Cmpd #1 (Tar)-treated and non-treated samples are, indeed, statistically significant. However, the Cmpd #1 (Tar)-treated samples show only minor reductions in GR activities, and reveal no dose-dependent trend. Therefore, we conclude that USP Cmpd #1 (Tar) dose not demonstrate a significant level of antagonist activity against the human Glucocorticoid receptor.
- 2. Table 3.1.3B presents ANOVA and Dunnetts post-test statistical analyses of data presented in Figure 3.1.3A. This analyses confirms that many, but not all, of the reductions in GR activity observed between the Cmpd #2 (Tea)-treated and non-treated samples are, indeed, statistically significant. However, the Cmpd #2 (Tea)-treated samples show only minor reductions in GR activities, and reveal no dose-dependent trend. Therefore, we conclude that USP Cmpd #2 (Tea) does not demonstrate a significant level of antagonist activity against the human Glucocorticoid receptor.

Page 15 of 19

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

3.1.5 Appendix: Primary Luminometry Data, GR Antagonism Assays

Tables 3.1.5A & B Firefly and *Renilla* luciferase primary data: Dexamethasone doseresponse data for GR assay validation.

A. GR Assay, Dexamethasone Dose-Response: Fire fly Luciferase								
[Dex] pM	#1	#2	#3	#4	Ave	StDev	%CV	Media Control
0.000	1,112	3,352	3,147	3,793	3,514	1,085	30.9	1.00
	4,409	4,068	3,670	4,562		,		1.10
7.81	4,354	3,541	4,373	4,448	4,179	427	10.2	1.19
15.6	4,230	3,816	4,165	5,216	4,357	601	13.8	1.24
31.3	7,106	6,047	6,234	5,810	6,299	565	8.97	1.79
62.5	37,652	35,772	33,315	41,179	36,980	3,315	8.97	10.5
125	493,575	463,367	439,172	464,330	465,111	22,261	4.79	132
200	951,486	903,200	907,115	1,020,060	945,465	54,338	5.75	269
200	936,011	901,247	931,526	794,120	890,726	66,229	7.44	253
250	1,378,043	1,228,959	1,314,509	1,462,931	1,346,111	98,978	7.35	383
500	2,132,719	1,690,503	1,862,292	2,038,370	1,930,971	195,600	10.1	549
1000	2,392,854	2,059,339	2,183,178	2,550,691	2,296,516	218,315	9.51	654

	B. GR Assay, Renilla Luciferase							
[Dex] pM	#1	#2	#3	#4	Ave	StDev	%CV	Media Control
0.000	2,318	7,330	7,028	7,170	6,188	1,777	28.7	1.00
0.000	7,893	5,921	5,200	6,645	0,100	1,777	20.7	1.00
7.81	7,184	5,995	6,076	6,752	6,502	567	8.73	1.05
15.6	7,098	5,593	6,500	7,201	6,598	738	11.2	1.07
31.3	6,661	6,106	6,844	6,594	6,551	315	4.81	1.06
62.5	7,767	6,962	6,262	7,959	7,238	781	10.8	1.17
125	8,919	7,627	7,951	7,636	8,033	609	7.59	1.30
200	7,428	6,526	6,551	7,713	7,055	607	8.61	1.14
200	7,128	6,624	6,994	6,688	6,859	242	3.52	1.11
250	7,976	6,695	7,470	7,650	7,448	544	7.30	1.20
500	7,900	6,634	6,704	7,093	7,083	581	8.20	1.14
1000	7,409	5,915	6,548	6,918	6,698	630	9.40	1.08

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

Tables 3.1.5C & D Firefly and *Renilla* luciferase primary data: USP Test compound #1 (Tar) in GR antagonist assay:

C. Fire Fly Luc: 250 pM Dex + Test Cmpd #1 (Tar)									
Dilution	µGm per 500 ul	#1	#2	#3	#4	Ave	Media Control		
Media Only	0	1,112 4,409	3,352 4,068	3,147 3,670	3,793 4,562	3,514	1.00		
1/3200	0.114	1,297,905	1,203,409	1,192,174	1,299,853	1,248,335	355		
1/1600	0.228	1,065,725	997,012	1,034,709	1,089,098	1,046,636	298		
1/800	0.556	1,097,343	1,004,208	936,992	1,029,078	1,016,905	289		
1/400	1.11	988,115	890,401	865,037	1,050,432	948,496	270		
1/200	2.23	869,650	808,442	774,064	887,360	834,879	238		
1/100	4.45	1,033,343	850,407	782,741	786,710	863,300	246		
Neat 89.07%	445								
Media + Dex	0	1,378,043	1,228,959	1,314,509	1,462,931	1,346,111	383		
D. Renilla Luc Internal Control									
250 pM Dex + Test Cmpd #1 (Tar)									
Dilution	µGm per 500 ul	#1	#2	#3	#4	Ave	Media Control		
Media Only	0	2,318 7,893	7,330 5,921	7,028 5,200	7,170 6,645	6,188	1.00		
	Media Only 1/3200 1/1600 1/800 1/400 1/200 1/100 Neat 89.07% Media + Dex Dilution Media	Dilution μGm per 500 ul Media Only 0 1/3200 0.114 1/1600 0.228 1/800 0.556 1/400 1.11 1/200 2.23 1/100 4.45 Neat 89.07% 445 Media + Dex 0 Dilution μGm per 500 ul Media 0	Dilution μGm per 500 ul #1 Media Only 0 1,112 4,409 1/3200 0.114 1,297,905 1/1600 0.228 1,065,725 1/800 0.556 1,097,343 1/400 1.11 988,115 1/200 2.23 869,650 1/100 4.45 1,033,343 Neat 89.07% 445 Media + Dex 0 1,378,043 D. Renii 250 pM I Dilution μGm per 500 ul #1 Media 0 2,318	Dilution μGm per 500 ul #1 #2 Media Only 0 1,112 3,352 4,409 4,068 4,068 1/3200 0.114 1,297,905 1,203,409 1/1600 0.228 1,065,725 997,012 1/800 0.556 1,097,343 1,004,208 1/400 1.11 988,115 890,401 1/200 2.23 869,650 808,442 1/100 4.45 1,033,343 850,407 Neat 89.07% 445 Neat 90,07% 1,378,043 1,228,959 D. Renilla Luc Interropolation 250 pM Dex + Test Company 250 pM Dex + Test Company 420,000 Dilution μGm per 500 ul #1 #2 Media 0 2,318 7,330	Dilution μGm per 500 ul #1 #2 #3 Media Only 0 1,112 3,352 3,147 0nly 4,409 4,068 3,670 1/3200 0.114 1,297,905 1,203,409 1,192,174 1/1600 0.228 1,065,725 997,012 1,034,709 1/800 0.556 1,097,343 1,004,208 936,992 1/400 1.11 988,115 890,401 865,037 1/200 2.23 869,650 808,442 774,064 1/100 4.45 1,033,343 850,407 782,741 Neat 89.07% 445 Neat 99,07% 1,378,043 1,228,959 1,314,509 D. Renilla Luc Internal Control 250 pM Dex + Test Cmpd #1 (Tar) 250 pM Dex + Test Cmpd #1 (Tar) #3 Media 90 2,318 7,330 7,028	Dilution μGm per 500 ul #1 #2 #3 #4 Media Only 0 1,112 3,352 3,147 3,793 1/3200 0.114 1,297,905 1,203,409 1,192,174 1,299,853 1/1600 0.228 1,065,725 997,012 1,034,709 1,089,098 1/800 0.556 1,097,343 1,004,208 936,992 1,029,078 1/400 1.11 988,115 890,401 865,037 1,050,432 1/200 2.23 869,650 808,442 774,064 887,360 1/100 4.45 1,033,343 850,407 782,741 786,710 Neat 89.07% 445 D. Renilla Luc Internal Control 250 pM Dex + Test Cmpd #1 (Tar) Dilution μGm per 500 ul #1 #2 #3 #4 Media 0 2,318 7,330 7,028 7,170	Dilution μGm per 500 ul #1 #2 #3 #4 Ave Media Only 0 1,112 3,352 3,147 3,793 3,514 3,514 3,514 3,514 1/3200 0.114 1,297,905 1,203,409 1,192,174 1,299,853 1,248,335 1/248,335 1/1600 0.228 1,065,725 997,012 1,034,709 1,089,098 1,046,636 1/800 1,097,343 1,004,208 936,992 1,029,078 1,016,905 1/400 1.11 988,115 890,401 865,037 1,050,432 948,496 1/200 2.23 869,650 808,442 774,064 887,360 834,879 1/100 4.45 1,033,343 850,407 782,741 786,710 863,300 Neat 89.07% 445 Media + Dex 0 1,378,043 1,228,959 1,314,509 1,462,931 1,346,111 1,346,111 Dilution μGm per 500 ul #1 #2 #3 #4 Ave Media 0 2,318 7,330 7,028 7,170 6,188		

	D. Renilla Luc Internal Control 250 pM Dex + Test Cmpd #1 (Tar)							
	Dilution	µGm per 500 ul	#1	#2	#3	#4	Ave	Media Control
Media	Media	0	2,318	7,330	7,028	7,170	6,188	1.00
Control	Only	U	7,893	5,921	5,200	6,645	0,100	1.00
	1/3200	0.114	7,412	7,227	6,846	7,602	7,272	1.18
Media	1/1600	0.228	7,087	6,361	5,841	6,835	6,531	1.06
+ 250 Dex	1/800	0.556	7,034	6,232	5,716	6,584	6,392	1.03
+ Cmpd 1	1/400	1.11	6,696	6,189	5,669	6,459	6,253	1.01
+ Cliipu 1	1/200	2.23	6,149	5,356	5,381	5,742	5,657	0.91
	1/100	4.45	5,492	5,287	5,293	4,621	5,173	0.84
	Neat 89.07%	445						
250 pM Dex Control	Media + Dex	0	7,976	6,695	7,470	7,650	7,448	1.20

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

Tables 3.1.5E & F Firefly and *Renilla* luciferase primary data: USP Test compound #2 (Tea) in GR antagonist assay:

		E. Fire Fly Luc: 250 pM Dex + Test Cmpd #2 (Tea)							
	Dilution	μGm per 500 ul	#1	#2	#3	#4	Ave	Media Control	
Media	Media	0	1,112	3,352	3,147	3,793	3,514	1.00	
Control	Only	U	4,409	4,068	3,670	4,562		1.00	
	1/3200	0.114	1,396,442	1,192,731	1,265,816	1,274,972	1,282,490	365	
Media + 250 Dex	1/1600	0.228	1,226,900	1,033,034	1,080,277	1,086,179	1,106,598	315	
	1/800	0.556	1,069,283	812,100	879,390	997,364	939,534	267	
+ Cmpd 2	1/400	1.11	976,187	849,471	850,510	974,029	912,549	260	
+ Clipu 2	1/200	2.23	912,093	767,049	783,170	902,889	841,300	239	
	1/100	4.45	917,990	843,579	861,062	971,865	898,624	256	
	Neat 89.02%	445							
250 pM Dex Control	Media + Dex	0	1,378,043	1,228,959	1,314,509	1,462,931	1,346,111	383	
				a Luc Intern				Ratio to	

	F. Renilla Luc Internal Control 250 pM Dex + Test Cmpd #2 (Tea)							
	Dilution	μGm per 500 ul	#1	#2	#3	#4	Ave	Media Control
Media	Media	0	2,318	7,330	7,028	7,170	6,188	1.00
Control	Only	U	7,893	5,921	5,200	6,645	0,100	1.00
	1/3200	0.114	8,436	7,203	7,088	7,597	7,581	1.23
Media	1/1600	0.228	7,414	6,069	6,309	6,454	6,562	1.06
+ 250 Dex	1/800	0.556	6,655	5,776	5,780	6,636	6,212	1.00
+ Cmpd 2	1/400	1.11	6,518	5,239	5,592	6,129	5,870	0.95
+ Clipu 2	1/200	2.23	6,065	5,094	5,271	5,629	5,515	0.89
	1/100	4.45	5,052	4,903	4,887	5,410	5,063	0.82
	Neat 89.02%	445						
250 pM Dex Control	Media + Dex	0	7,976	6,695	7,470	7,650	7,448	1.20

Indigo Biosciences, Inc. R081202 Date Last Revised : 12/02/2008

4. REFERENCES

None

(~ End of Report ~)